Home
Class 12
MATHS
int(0)^(pi//6)(sinx)/(cos^(3)x) dx is eq...

`int_(0)^(pi//6)(sinx)/(cos^(3)x) dx` is equal to

A

`2/3`

B

`1/6`

C

`2`

D

`1/3`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|148 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos
  • CONTINUITY

    TARGET PUBLICATION|Exercise Evaluation Test|10 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//6) (sin x) /(cos^(3)x) dx is

int_(0)^(pi//4)(x.sinx)/(cos^(3)x) dx equal to :

int_(0)^(pi//2)(sinx)/((1+cos^(2)x))dx

int_(0)^(pi//6)(cosx)/((3+4sinx))dx

The integral int_(0)^(pi/2)(dx)/(1+cos x) is equal to

int_0^(pi/2) (sinx)/(1+Cos^2x)dx

If A=int_(0)^( pi)(cos x)/((x+2)^(2))dx, then int_(0)^( pi/2)(sin2x)/(x+1)dx is equal to

The valueof int_((pi)/(6))^((pi)/(3))e^(sec^(2)x)(sinx)/(cos^(3)x)dx is equal to