Home
Class 12
MATHS
The value of int(1)^(e^(2)) (dx)/(x(1+lo...

The value of `int_(1)^(e^(2)) (dx)/(x(1+logx)^(2))`is

A

`2/3`

B

`1/3`

C

`3/2`

D

`log2`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|148 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos
  • CONTINUITY

    TARGET PUBLICATION|Exercise Evaluation Test|10 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos

Similar Questions

Explore conceptually related problems

int_(1)^(2)(dx)/(x(1+logx)^(2))

The value of int_(1)^(e)(dx)/(6x(logx)^(2)+7x(logx)+2x)=

int_(1//e)^(e)(dx)/(x(logx)^(1//3))

The value of int_(1)^(e)(1+x^(2)lnx)/(x+x^(2)lnx)dx

int_(e)^(e^(2)) (1/logx-1/((logx)^(2)))dx=

int_(1)^(2)(logx)/(x)dx

int_(1)^(2)(logx)/(x)dx

The value of int_(1)^(e)(1+x^(2)ln x)/(x+x^(2)ln x)*dx is :

The value of int_(1//e )^(e )(|log x|)/(x^(2))dx , is

int_(0)^(e^(2)){(1)/((logx))-(1)/((logx)^(2))}dx