Home
Class 12
MATHS
int(0)^(pi//8) cos^(3)4 theta d theta=...

`int_(0)^(pi//8) cos^(3)4 theta d theta=`

A

`2/3`

B

`1/4`

C

`1/3`

D

`1/6`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{8}} \cos^3(4\theta) \, d\theta \), we can follow these steps: ### Step 1: Use the identity for cosine cubed We can use the identity for \( \cos^3 x \): \[ \cos^3 x = \frac{1}{4} \cos(3x) + \frac{3}{4} \cos x \] Applying this identity, we rewrite the integral: \[ I = \int_{0}^{\frac{\pi}{8}} \cos^3(4\theta) \, d\theta = \int_{0}^{\frac{\pi}{8}} \left( \frac{1}{4} \cos(12\theta) + \frac{3}{4} \cos(4\theta) \right) d\theta \] ### Step 2: Split the integral Now we can split the integral into two parts: \[ I = \frac{1}{4} \int_{0}^{\frac{\pi}{8}} \cos(12\theta) \, d\theta + \frac{3}{4} \int_{0}^{\frac{\pi}{8}} \cos(4\theta) \, d\theta \] ### Step 3: Evaluate the first integral The integral of \( \cos(k\theta) \) is given by: \[ \int \cos(k\theta) \, d\theta = \frac{1}{k} \sin(k\theta) \] Thus, for the first integral: \[ \int_{0}^{\frac{\pi}{8}} \cos(12\theta) \, d\theta = \left[ \frac{1}{12} \sin(12\theta) \right]_{0}^{\frac{\pi}{8}} = \frac{1}{12} \sin\left(12 \cdot \frac{\pi}{8}\right) - \frac{1}{12} \sin(0) = \frac{1}{12} \sin\left(\frac{3\pi}{2}\right) = \frac{1}{12} \cdot (-1) = -\frac{1}{12} \] ### Step 4: Evaluate the second integral Now for the second integral: \[ \int_{0}^{\frac{\pi}{8}} \cos(4\theta) \, d\theta = \left[ \frac{1}{4} \sin(4\theta) \right]_{0}^{\frac{\pi}{8}} = \frac{1}{4} \sin\left(4 \cdot \frac{\pi}{8}\right) - \frac{1}{4} \sin(0) = \frac{1}{4} \sin\left(\frac{\pi}{2}\right) = \frac{1}{4} \cdot 1 = \frac{1}{4} \] ### Step 5: Substitute back into the expression for \( I \) Now substituting back into the expression for \( I \): \[ I = \frac{1}{4} \left(-\frac{1}{12}\right) + \frac{3}{4} \left(\frac{1}{4}\right) = -\frac{1}{48} + \frac{3}{16} \] ### Step 6: Find a common denominator and simplify To combine these fractions, we find a common denominator (48): \[ -\frac{1}{48} + \frac{3 \cdot 3}{48} = -\frac{1}{48} + \frac{9}{48} = \frac{8}{48} = \frac{1}{6} \] ### Final Result Thus, the value of the integral is: \[ I = \frac{1}{6} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|148 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos
  • CONTINUITY

    TARGET PUBLICATION|Exercise Evaluation Test|10 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos

Similar Questions

Explore conceptually related problems

int_(0) ^(pi//2) cos^(2) theta d theta =

int_(0)^( pi/2)cos^(3)theta d theta

int_(0)^( pi/2)cos^(9)theta d theta

int_(0)^( pi/2)cos^(9)theta d theta

int_(0)^( pi/2)sin^(3)theta d theta=

Evaluate the following integrals: int_(0)^( pi/6)cos^(-3)2 theta sin2 theta d theta

The value of int_(0)^(pi) | sin^(3) theta | d theta is

Let sum_(k=1)^(89)cos^(6)(k^(@))=A then (A)A>int_(0)^((pi)/(2))cos^(6)theta d theta(B)A in[20,30](C)A<((180)/(pi))int_(0)^((pi)/(2))cos^(6)theta d theta(D)A

=4int_(0)^( pi&sol2)cos^(2)theta d theta

Evaluate the following : int_(0)^(pi//2)sin theta d theta