Home
Class 12
MATHS
If kint(0)^(1)xf(3x)dx=int(0)^(3)tf(t)dt...

If `kint_(0)^(1)xf(3x)dx=int_(0)^(3)tf(t)dt`, then the value of k is

A

9

B

3

C

`1/9`

D

`1/3`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|148 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos
  • CONTINUITY

    TARGET PUBLICATION|Exercise Evaluation Test|10 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos

Similar Questions

Explore conceptually related problems

If f(x)=int_(0)^(x)tf(t)dt+2, then

If int_(0)^(x)f(t)dt=x+int_(x)^(1)f(t)dt ,then the value of f(1) is

f(x)=int_(0)^( pi)f(t)dt=x+int_(x)^(1)tf(t)dt, then the value of f(1) is (1)/(2)

If int_(0)^(x) f(t)dt=x+int_(x)^(1) t f(t) dt , then the value of f(1), is

If f(x)=int_(0)^(x)e^(-t)f(x-t)dt then the value of f(3) is

If int_(0^k) 4x^3dx=16 then the value of k is

If int_(0)^(1)(tan^(-1)x)/(x)dx=k int_(0)^( pi/2)(x)/(sin x)dx then the value of k is

f(x)=x^(3)+1-2x int_(0)^(x)g(t)dt and g(x)=x-int_(0)^(1)f(t)dt. Then yhe value of int_(0)^(1)f(t)dt lies in the interval

If f(x)=x+int_(0)^(1)t(x+t)f(t)dt, then find the value of the definite integral int_(0)^(1)f(x)dx