Home
Class 12
MATHS
int(0)^(1)(1)/(e^(x)+e^(-x))dx=...

`int_(0)^(1)(1)/(e^(x)+e^(-x))dx=`

A

`tan^(-1)(1-e)/(1+e)`

B

`tan^(-1)((e-1)/(e+1))`

C

`(pi)/4`

D

`tan^(-1)e+(pi)/4`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|148 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos
  • CONTINUITY

    TARGET PUBLICATION|Exercise Evaluation Test|10 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1) (dx)/(e^(x)+e^(-x))

int_(0)^(1) (dx)/(e^(x) +e^(-x)) dx is equal to

int_(0)^(1)(e^(x))/(1+e^(2x))dx

int_(0)^(1)(e^(-x))/(1+e^(-x))dx

Solve int_(-1)^(1)(e^(x)-e^(-x))dx

int_(0)^(1)(e^(-2x))/(1+e^(-x))dx=

int_(-1)^(1)(e^(x)-e^(-x))dx=

int_(0)^(1)e^(e^(x))(1+xe^(x))dx

int_(0)^(1)(e^(x))/((2+e^(x)))dx

int_(0)^(1)(e^(x)dx)/(1+e^(x))