Home
Class 12
MATHS
int(0)^(1)(e^(-2x))/(1+e^(-x))dx=...

`int_(0)^(1)(e^(-2x))/(1+e^(-x))dx=`

A

`log((1+e)/e)-1/e+1`

B

`log((1+e)/(2e))-1/e+1`

C

`log((1+e)/(2e))+1/e-1`

D

`log((1+e)/2)+1/e-1`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|148 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos
  • CONTINUITY

    TARGET PUBLICATION|Exercise Evaluation Test|10 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1)(e^(-x))/(1+e^(-x))dx

6*int_(0)^(1)(e^(2x))/(1+e^(2x))dx

int_(0)^(1)(e^(x))/((1+e^(2x)))dx

int_(0)^(1)(e^(x))/(1+e^(2x))dx

int_(0)^(1)(e^(x)dx)/(1+e^(x))

int_(0)^(1)(e^(2x)-1)/(e^(2x)+1)dx=

int_(0)^(1)(e^(x))/((2+e^(x)))dx

int_(0)^(1)e^(e^(x))(1+xe^(x))dx

Evaluate int_(0)^(1)(e^(-x)dx)/(1+e^(x))

int_(0)^(log 2)(e^(x))/(1+e^(x))dx=