Home
Class 12
MATHS
The value of the integral overset(log5)...

The value of the integral `overset(log5)underset(0)int(e^(x)sqrt(e^(x)-1))/(e^(x)+3)dx`, is

A

`3+2pi`

B

`4-pi`

C

`2+pi`

D

`4+pi`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|148 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos
  • CONTINUITY

    TARGET PUBLICATION|Exercise Evaluation Test|10 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(ln13)(e^(x)sqrt(e^(x)-1))/(e^(x)+3)dx

int(ln(e^(x)+1))/(e^(x))dx

int(sqrt(e^x))/(sqrt(e^(-x)-e^x))dx=

int log(e^(x)+1)(e^(x))dx

The value of the integral int_0^(log5) (e^(x)sqrt(e^(x)-1))/(e^(x)+3)dx , is

int(e^(5x))/(sqrt(e^(5x)+1))dx=

The value of the integral int_(0)^(log5)(e^(x)sqrt(e^(x)-1))/(e^(x)+3)dx

int(e^(log sqrt(x)))/(x)dx=

int_(0)^(log 2)(e^(x))/(1+e^(x))dx=