Home
Class 12
MATHS
int(3)^(7)sqrt((x-3)(7-x))dx=...

`int_(3)^(7)sqrt((x-3)(7-x))dx=`

A

`pi`

B

`0`

C

`2pi`

D

`(pi)/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{3}^{7} \sqrt{(x-3)(7-x)} \, dx \), we can use a substitution method. Here's a step-by-step solution: ### Step 1: Simplify the Integral We start with the integral: \[ I = \int_{3}^{7} \sqrt{(x-3)(7-x)} \, dx \] ### Step 2: Use Substitution Let’s use the substitution: \[ x = 5 + 2 \sin \theta \] This substitution is chosen because it will transform the limits and simplify the square root. ### Step 3: Determine the New Limits When \( x = 3 \): \[ 3 = 5 + 2 \sin \theta \implies \sin \theta = -1 \implies \theta = -\frac{\pi}{2} \] When \( x = 7 \): \[ 7 = 5 + 2 \sin \theta \implies \sin \theta = 1 \implies \theta = \frac{\pi}{2} \] ### Step 4: Change of Variables Now, we need to find \( dx \): \[ dx = 2 \cos \theta \, d\theta \] ### Step 5: Substitute into the Integral Now substitute \( x \) and \( dx \) into the integral: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{(5 + 2 \sin \theta - 3)(7 - (5 + 2 \sin \theta))} \cdot 2 \cos \theta \, d\theta \] This simplifies to: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{(2 + 2 \sin \theta)(2 - 2 \sin \theta)} \cdot 2 \cos \theta \, d\theta \] \[ = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{4 \cos^2 \theta} \cdot 2 \cos \theta \, d\theta \] \[ = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 4 \cos^2 \theta \, d\theta \] ### Step 6: Use the Identity Using the identity \( \cos^2 \theta = \frac{1 + \cos(2\theta)}{2} \): \[ I = 4 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1 + \cos(2\theta)}{2} \, d\theta \] \[ = 2 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (1 + \cos(2\theta)) \, d\theta \] ### Step 7: Evaluate the Integral Now evaluate the integral: \[ = 2 \left[ \theta + \frac{1}{2} \sin(2\theta) \right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \] Calculating the limits: \[ = 2 \left[ \left( \frac{\pi}{2} + 0 \right) - \left( -\frac{\pi}{2} + 0 \right) \right] \] \[ = 2 \left[ \frac{\pi}{2} + \frac{\pi}{2} \right] = 2\pi \] ### Final Result Thus, the value of the integral is: \[ I = 2\pi \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|148 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos
  • CONTINUITY

    TARGET PUBLICATION|Exercise Evaluation Test|10 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(7)(1)/(sqrt(4+3x))dx=

int(3)/(sqrt(7x-2)-sqrt(7x-5))dx=

Evaluate: int(dx)/((2x-7)sqrt((x-3)(x-4)))

int(dx)/(sqrt((3x-4)^(2)-7)

int(1)/(sqrt(7-2x))dx

int(3x+5)^(7)dx

int(x+3)/(sqrt(7-6x-x^(2)))dx

int_(0)^(7)(sqrt(7-x))/(sqrt(x)+sqrt(7-x))dx = (a) 1 (b) (7)/(2) (c) 5 (d) 7

I=int(2)/(sqrt(x)-sqrt(x+7))dx

Evaluate: int(8x+13)/(sqrt(4x+7))dx