Home
Class 12
MATHS
int(0)^(1)cos^(-1)x dx=...

`int_(0)^(1)cos^(-1)x dx=`

A

`0`

B

1

C

2

D

-1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{1} \cos^{-1}(x) \, dx \), we will use integration by parts. ### Step-by-Step Solution: 1. **Identify the parts for integration by parts**: We will let: \[ u = \cos^{-1}(x) \quad \text{and} \quad dv = dx \] Then, we need to find \( du \) and \( v \): \[ du = -\frac{1}{\sqrt{1-x^2}} \, dx \quad \text{and} \quad v = x \] 2. **Apply the integration by parts formula**: The integration by parts formula is given by: \[ \int u \, dv = uv - \int v \, du \] Substituting our values, we have: \[ I = \left[ x \cos^{-1}(x) \right]_{0}^{1} - \int_{0}^{1} x \left(-\frac{1}{\sqrt{1-x^2}}\right) \, dx \] 3. **Evaluate the boundary term**: Now we evaluate \( \left[ x \cos^{-1}(x) \right]_{0}^{1} \): - At \( x = 1 \): \[ 1 \cdot \cos^{-1}(1) = 1 \cdot 0 = 0 \] - At \( x = 0 \): \[ 0 \cdot \cos^{-1}(0) = 0 \cdot \frac{\pi}{2} = 0 \] Therefore, \[ \left[ x \cos^{-1}(x) \right]_{0}^{1} = 0 - 0 = 0 \] 4. **Simplify the integral**: Now we simplify the integral: \[ I = 0 + \int_{0}^{1} \frac{x}{\sqrt{1-x^2}} \, dx \] 5. **Substitute for the integral**: To evaluate \( \int_{0}^{1} \frac{x}{\sqrt{1-x^2}} \, dx \), we can use the substitution: \[ t = 1 - x^2 \quad \Rightarrow \quad dt = -2x \, dx \quad \Rightarrow \quad dx = -\frac{dt}{2x} \] When \( x = 0 \), \( t = 1 \) and when \( x = 1 \), \( t = 0 \). Thus: \[ I = \int_{1}^{0} \frac{x}{\sqrt{t}} \left(-\frac{dt}{2x}\right) = \frac{1}{2} \int_{0}^{1} t^{-1/2} \, dt \] 6. **Evaluate the new integral**: The integral \( \int t^{-1/2} \, dt \) is: \[ \int t^{-1/2} \, dt = 2t^{1/2} \quad \text{evaluated from } 0 \text{ to } 1 \] So we have: \[ \frac{1}{2} \left[ 2t^{1/2} \right]_{0}^{1} = \frac{1}{2} \left[ 2(1) - 0 \right] = \frac{1}{2} \cdot 2 = 1 \] 7. **Final result**: Therefore, the value of the integral is: \[ I = 1 \] ### Final Answer: \[ \int_{0}^{1} \cos^{-1}(x) \, dx = 1 \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|148 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos
  • CONTINUITY

    TARGET PUBLICATION|Exercise Evaluation Test|10 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos

Similar Questions

Explore conceptually related problems

Evaluate : (i) int_(0)^(2)e^(x//2)dx (ii) int_(2)^(4)(x)/((x^(2)+1))dx (iii) int_(0)^(1)cos^(-1)xdx

int_(-a)^(a)(cos^(-1)x-sin^(-1)sqrt(1-x^(2)))dx is (a>0) there int_(0)^(a)cos^(-1)xdx=A) is

int_(0)^(1)(cos^(-1)x)^(2)dx

Evaluate the following : int_(0)^(1)(cos^(-1)x)^(2)dx

int_(0)^(1)x cos(tan^(-1)x)dx

Evaluate the following integral: int_(0)^(1)cos^(-1)((1-x^(2))/(1+x^(2)))dx

If int_(0)^(1) tan^(-1) x dx = p , then the value of int_(0)^(1) tan^(-1)((1-x)/(1 +x)) dx is

int_(0)^(1)(cos x)/(1+x)dx=k and int_(6 pi-3)^(6 pi)(cos((x)/(3)))/(6 pi+3-x)dx=mk