Home
Class 12
MATHS
int(pi/4)^(pi/2) e^x(logsinx+cotx)dx...

`int_(pi/4)^(pi/2) e^x(logsinx+cotx)dx`

A

`e^((pi)/4)log2`

B

`-e^((pi)/4)log2`

C

`1/2e^((pi)/4)log2`

D

`-1/2e^((pi)/4)log2`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|148 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos
  • CONTINUITY

    TARGET PUBLICATION|Exercise Evaluation Test|10 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos

Similar Questions

Explore conceptually related problems

int_((pi)/(4))^((pi)/(2))e^(x)(log sin x+cot x)dx

inte^(3logsinx)cotx dx=

int_(-pi//4)^(pi//4) e^(-x)sin x" dx" is

int_((-pi)/(4))^((pi)/(2))e^(-x)sin xdx=

int_(0)^(pi//4)(cosx-sinx)dx+int_(pi//4)^(5pi//4)(sinx-cosx)dx+int_(2pi)^(pi//4)(cosx-sinx)dx is equal to

int_(0)^(pi//2) log (cotx ) dx=

int_(pi//3)^(pi//4)(tanx+cotx)^(2)dx

Prove that int_(0)^(pi//2)(2logsinx-logsin2x)dx=(pi)/(2)(log2) .

int_(0)^(pi//4)e^(x)sin x dx =