Home
Class 12
MATHS
If x(x^(4)+1)phi(x)=1, then int(1)^(2)ph...

If `x(x^(4)+1)phi(x)=1`, then `int_(1)^(2)phi(x)dx=`

A

`1/4 "log" 32/17`

B

`1/2 "log" 32/17`

C

`1/4 "log"16/17`

D

`1/2 "log" 16/17`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \( \int_{1}^{2} \phi(x) \, dx \) given the equation \( x(x^4 + 1) \phi(x) = 1 \). Let's break it down step by step. ### Step 1: Express \( \phi(x) \) From the given equation, we can isolate \( \phi(x) \): \[ \phi(x) = \frac{1}{x(x^4 + 1)} \] ### Step 2: Set up the integral Now, we can substitute \( \phi(x) \) into the integral: \[ \int_{1}^{2} \phi(x) \, dx = \int_{1}^{2} \frac{1}{x(x^4 + 1)} \, dx \] ### Step 3: Simplify the integrand We can rewrite the integrand: \[ \frac{1}{x(x^4 + 1)} = \frac{1}{x^5 + x} \] This will help us in the next steps. ### Step 4: Use substitution To evaluate the integral, we can use the substitution \( t = x^4 + 1 \). Then, we differentiate: \[ dt = 4x^3 \, dx \implies dx = \frac{dt}{4x^3} \] We also need to change the limits of integration. When \( x = 1 \): \[ t = 1^4 + 1 = 2 \] When \( x = 2 \): \[ t = 2^4 + 1 = 17 \] ### Step 5: Rewrite the integral in terms of \( t \) Now we can rewrite the integral: \[ \int_{1}^{2} \frac{1}{x(x^4 + 1)} \, dx = \int_{2}^{17} \frac{1}{x(t)} \cdot \frac{dt}{4x^3} \] Since \( x^4 = t - 1 \), we can express \( x \) in terms of \( t \): \[ x = (t - 1)^{1/4} \] Thus, the integral becomes: \[ \int_{2}^{17} \frac{1}{(t - 1)^{1/4}((t - 1)^{1/4})^4 + 1} \cdot \frac{dt}{4(t - 1)^{3/4}} \] This simplifies to: \[ \int_{2}^{17} \frac{1}{4(t - 1)^{1}} \, dt \] ### Step 6: Evaluate the integral Now we can evaluate the integral: \[ \frac{1}{4} \int_{2}^{17} \frac{1}{t - 1} \, dt \] The integral of \( \frac{1}{t - 1} \) is \( \ln |t - 1| \): \[ = \frac{1}{4} \left[ \ln |t - 1| \right]_{2}^{17} \] Calculating the limits: \[ = \frac{1}{4} \left( \ln(16) - \ln(1) \right) = \frac{1}{4} \ln(16) \] Since \( \ln(1) = 0 \): \[ = \frac{1}{4} \cdot 4 \ln(2) = \ln(2) \] ### Final Result Thus, the value of the integral \( \int_{1}^{2} \phi(x) \, dx \) is: \[ \boxed{\ln(2)} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|148 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos
  • CONTINUITY

    TARGET PUBLICATION|Exercise Evaluation Test|10 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos

Similar Questions

Explore conceptually related problems

int_(1)^(4)(x^(2)-x)dx

If f(0)=2,f'(x)=f(x),phi(x)=x+f(x)" then "int_(0)^(1)f(x)phi(x)dx is

If f(0)=2, f'(x) =f(x), phi (x) = x+f(x) then int_(0)^(1) f(x) phi (x) dx is

By substitution: Theorem: If int f(x)dx=phi(x) then int f(ax+b)dx=(1)/(a)phi(ax+b)dx

int e^(x){f(x)-f'(x)}dx=phi(x), then int e^(x)f(x)dx is

If f(x),g(x),h(x) and phi(x) are polynomial in x ,(int_(1)^(x)f(x)h(x)dx)(int_(1)^(x)g(x)phi(x)dx)-(int_(1)^(x)g(x)h(x)dx) is divisible by (x-1)^(2). Find maximum value of lambda

if phi (x) = lim_ (x rarr oo) (x ^ (n) -x ^ (- n)) / (x ^ (n) + x ^ (- n)) then int sin ^ (- 1) x phi (x) dx

Let inte^(x){f(x)-f'(x)}dx=phi(x) . then, inte^(x)f(x)dx is equal to

Let F(x) =int_(a)^(x^(2)) cos sqrt(t)dt Statement-1: F'(x)=cos x Statement-2: If f(x) =int_(a)^(x) phi(t) dt , then f'(x)= phi (x).