Home
Class 12
MATHS
int(-1)^(2)|x|dx=...

`int_(-1)^(2)|x|dx=`

A

`5/2`

B

`1/2`

C

`3/2`

D

`7/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int_{-1}^{2} |x| \, dx\), we need to consider the definition of the absolute value function, which behaves differently depending on whether \(x\) is positive or negative. ### Step 1: Determine the intervals for the absolute value function The absolute value function \(|x|\) can be expressed as: - \(|x| = -x\) when \(x < 0\) - \(|x| = x\) when \(x \geq 0\) Given the limits of integration from \(-1\) to \(2\), we can break the integral into two parts: 1. From \(-1\) to \(0\) (where \(|x| = -x\)) 2. From \(0\) to \(2\) (where \(|x| = x\)) ### Step 2: Set up the integral We can write the integral as: \[ \int_{-1}^{2} |x| \, dx = \int_{-1}^{0} -x \, dx + \int_{0}^{2} x \, dx \] ### Step 3: Calculate the first integral Now, we calculate the first integral: \[ \int_{-1}^{0} -x \, dx \] The antiderivative of \(-x\) is \(-\frac{x^2}{2}\). We evaluate this from \(-1\) to \(0\): \[ \left[-\frac{x^2}{2}\right]_{-1}^{0} = \left[-\frac{0^2}{2}\right] - \left[-\frac{(-1)^2}{2}\right] = 0 - \left[-\frac{1}{2}\right] = \frac{1}{2} \] ### Step 4: Calculate the second integral Next, we calculate the second integral: \[ \int_{0}^{2} x \, dx \] The antiderivative of \(x\) is \(\frac{x^2}{2}\). We evaluate this from \(0\) to \(2\): \[ \left[\frac{x^2}{2}\right]_{0}^{2} = \left[\frac{2^2}{2}\right] - \left[\frac{0^2}{2}\right] = \frac{4}{2} - 0 = 2 \] ### Step 5: Combine the results Now, we combine both results: \[ \int_{-1}^{2} |x| \, dx = \frac{1}{2} + 2 = \frac{1}{2} + \frac{4}{2} = \frac{5}{2} \] ### Final Answer Thus, the value of the integral \(\int_{-1}^{2} |x| \, dx\) is: \[ \frac{5}{2} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|148 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos
  • CONTINUITY

    TARGET PUBLICATION|Exercise Evaluation Test|10 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos

Similar Questions

Explore conceptually related problems

int_(1)^(2)[2x]dx

int_(1)^(2)|x-1|dx is equal to

int_(1)^(2)|x-3|dx is

int_(-1)^(2)2^(x)dx

The vaue of int_(-1)^(2) (|x|)/(x)dx is

Evaluate int_(-1)^2 |x|/x dx

int_(-1)^(2) 2^(x)dx

int _(-1)^(2) |x|^(3) dx is equal to