Home
Class 12
MATHS
int(0)^(3)|2-x|dx equals...

`int_(0)^(3)|2-x|dx` equals

A

`2/7`

B

`5/2`

C

`3/2`

D

`-3/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{3} |2 - x| \, dx \), we need to analyze the expression inside the absolute value, \( |2 - x| \). ### Step 1: Determine where the expression changes sign The expression \( 2 - x \) is positive when \( x < 2 \) and negative when \( x > 2 \). Therefore, we can break the integral into two parts based on the point where the expression changes sign (at \( x = 2 \)). ### Step 2: Split the integral We can express the integral as: \[ \int_{0}^{3} |2 - x| \, dx = \int_{0}^{2} (2 - x) \, dx + \int_{2}^{3} (-(2 - x)) \, dx \] This is because: - For \( x \) in the interval \( [0, 2] \), \( |2 - x| = 2 - x \). - For \( x \) in the interval \( [2, 3] \), \( |2 - x| = -(2 - x) = x - 2 \). ### Step 3: Evaluate the first integral Now, we evaluate the first integral: \[ \int_{0}^{2} (2 - x) \, dx \] Calculating this: \[ = \left[ 2x - \frac{x^2}{2} \right]_{0}^{2} = \left( 2(2) - \frac{(2)^2}{2} \right) - \left( 2(0) - \frac{(0)^2}{2} \right) \] \[ = \left( 4 - 2 \right) - 0 = 2 \] ### Step 4: Evaluate the second integral Next, we evaluate the second integral: \[ \int_{2}^{3} (x - 2) \, dx \] Calculating this: \[ = \left[ \frac{x^2}{2} - 2x \right]_{2}^{3} = \left( \frac{(3)^2}{2} - 2(3) \right) - \left( \frac{(2)^2}{2} - 2(2) \right) \] \[ = \left( \frac{9}{2} - 6 \right) - \left( 2 - 4 \right) \] \[ = \left( \frac{9}{2} - \frac{12}{2} \right) - (-2) = \left( -\frac{3}{2} \right) + 2 = -\frac{3}{2} + \frac{4}{2} = \frac{1}{2} \] ### Step 5: Combine the results Now, we combine the results of both integrals: \[ \int_{0}^{3} |2 - x| \, dx = 2 + \frac{1}{2} = \frac{4}{2} + \frac{1}{2} = \frac{5}{2} \] ### Final Answer Thus, the value of the integral \( \int_{0}^{3} |2 - x| \, dx \) is: \[ \frac{5}{2} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|148 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos
  • CONTINUITY

    TARGET PUBLICATION|Exercise Evaluation Test|10 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int_(0)^(3) |x| dx is equal :

int_(0)^(3/2)*(2-x)dx

int_(0)^(3) [x]dx is equal to

int_(-3)^(2)|x|dx is equal to

int_(0)^(4)|x-1| dx is equal to

[ If f(x)=|x|+|x-1|, then int_(0)^(2)f(x)dx equals- [ (A) 3, (B) 2, (C) 0, (D) -1]]

Let int_(0)^(a) f(x)dx=lambda and int_(0)^(a) f(2a-x)dx=mu . Then, int_(0)^(2a) f(x) dx equal to

int_(0)^(4){x}dx is equal to

A continous function f(x) is such that f(3x)=2f(x), AA x in R . If int_(0)^(1)f(x)dx=1, then int_(1)^(3)f(x)dx is equal to