Home
Class 12
MATHS
int(0)^(2pi)|sinx|dx=?...

`int_(0)^(2pi)|sinx|dx=?`

A

0

B

1

C

2

D

4

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|148 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos
  • CONTINUITY

    TARGET PUBLICATION|Exercise Evaluation Test|10 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos

Similar Questions

Explore conceptually related problems

int_(pi)^(2pi)|sinx|dx=?

The value of int_(0)^(2pi)|cosx-sinx|dx is equal to

If int_(0)^(pi)xf(sinx)dx=A int_(0)^(pi//2) f(sinx)dx , then A is

int_(0)^(2pi)(sinx+cosx)dx=

Evaluate: int_0^(2pi) [2sinx]dx

Evaluate -int_(2pi)^(0)|sinx|dx

int_(0)^((14pi)/3) |sinx|dx

int_(0)^(2pi)(sinx+ abs(sinx)) dx =

The greater of int_(0)^(pi//2)(sinx)/x dx and pi/2 is

int_(0)^(pi/2) |sinx - cosx |dx is equal to