Home
Class 12
MATHS
int(0)^(pi) sqrt((cos2x+1)/2)dx is equal...

` int_(0)^(pi) sqrt((cos2x+1)/2)dx` is equal to

A

0

B

2

C

1

D

-1

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|148 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos
  • CONTINUITY

    TARGET PUBLICATION|Exercise Evaluation Test|10 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos

Similar Questions

Explore conceptually related problems

int_(0)^( pi)(sqrt(1+cos2x))/(2)dx

int_(0)^(pi//2)sqrt(1+cos2x)dx=?

int_(0)^(pi//2)sqrt(1-sin 2 x dx) is equal to

int_(0)^(pi//4)sqrt(1+cos2x)dx

int_(0)^(200 pi) sqrt((1-cos2x)/(2))dx=

If A=int_(0)^( pi)(sin x)/(x^(2))dx, then int_(0)^((pi)/(2))(cos(2x))/(x)dx, is equal to:

What is int_(0)^(2pi) sqrt(1+ sin'x/2) dx equal to ?

int_(0)^(pi//2) sqrt(1- cos 2x) dx

int_(0)^(pi//2) sqrt(1- cos 2x) dx