Home
Class 12
MATHS
The value of int(0)^(pi)e^(cos^(2)x)cos^...

The value of `int_(0)^(pi)e^(cos^(2)x)cos^(5)3x dx` is

A

1

B

-1

C

0

D

`(pi)/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\pi} e^{\cos^2 x} \cos^5(3x) \, dx \), we can use the property of definite integrals that states: \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \, dx \] In this case, \( a = 0 \) and \( b = \pi \). Therefore, we can rewrite the integral as follows: 1. **Step 1: Apply the property** \[ I = \int_{0}^{\pi} e^{\cos^2(\pi - x)} \cos^5(3(\pi - x)) \, dx \] 2. **Step 2: Simplify the expressions** - We know that \( \cos(\pi - x) = -\cos(x) \), so: \[ \cos^2(\pi - x) = \cos^2(x) \] - For \( \cos(3(\pi - x)) \): \[ \cos(3(\pi - x)) = \cos(3\pi - 3x) = -\cos(3x) \] - Therefore, \( \cos^5(3(\pi - x)) = (-\cos(3x))^5 = -\cos^5(3x) \). 3. **Step 3: Substitute back into the integral** \[ I = \int_{0}^{\pi} e^{\cos^2(x)} (-\cos^5(3x)) \, dx \] \[ I = -\int_{0}^{\pi} e^{\cos^2(x)} \cos^5(3x) \, dx \] 4. **Step 4: Combine the two expressions for \( I \)** Now we have two expressions for \( I \): \[ I = \int_{0}^{\pi} e^{\cos^2(x)} \cos^5(3x) \, dx \] \[ I = -\int_{0}^{\pi} e^{\cos^2(x)} \cos^5(3x) \, dx \] Adding these two equations: \[ I + I = 0 \] \[ 2I = 0 \] Therefore, we find: \[ I = 0 \] 5. **Final Answer:** The value of the integral \( \int_{0}^{\pi} e^{\cos^2 x} \cos^5(3x) \, dx \) is \( \boxed{0} \).
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|148 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos
  • CONTINUITY

    TARGET PUBLICATION|Exercise Evaluation Test|10 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^(2pi)cos^(99)x dx is

The value of int_(0)^(2pi)cos^(5)x dx , is

The value of int_(0)^(pi)|cos x|^(3)dx is :

int_(0)^(2 pi)cos^(5)x*dx

If int_(0)^( pi)e^(sin x)dx=p. Then value of int_(0)^((pi)/(2))x cos xe^(sin x)dx is (A) (pi)/(2)e-p(B)(pi)/(2)e-2p (C) (pi)/(2)e-(p)/(2)(D)p

If f(x)=cos ec(x-(pi)/(3))cos ec(x-(pi)/(6)) then the value of int_(0)^((pi)/(2))f(x)dx is

For any value of nin I, int_(0)^(pi)e^(cos^(2)x)cos^(3)[(2n+1)x]dx equals

The value of int_(0)^((pi)/(2))(cos3x+1)/(cos x-1)dx is equal to