Home
Class 12
MATHS
If : int(0)^(2a)f(x)dx=2.int(0)^(a)f(x)d...

If : `int_(0)^(2a)f(x)dx=2.int_(0)^(a)f(x)dx`, then :

A

`f(2a-x)=-f(x)`

B

`f(2a-x)=f(x)`

C

`f(a-x)=-f(x)`

D

`f(a-x)=f(x)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|148 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos
  • CONTINUITY

    TARGET PUBLICATION|Exercise Evaluation Test|10 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(2a)f(x)dx-int_(0)^(a)f(x)dx=

int_(0)^(2a)f(x)dx-int_(0)^(a)f(x)dx=

If int_(0)^(2a) f(x)dx=int_(0)^(2a) f(x)dx , then

Prove that : int_(0)^(a) f(x) dx = int_(0)^(a) f(a-x)dx hence evaluate : int_(0)^(pi//2) (sin x)/(sin x + cos x) dx

STATEMENT 1: The value of int_(0)^(2 pi)cos^(99)xdx is 0 STATEMENT 2:int_(0)^(2a)f(x)dx=2int_(0)^(a)f(x)dx, if f(2a-x)=f(x)

Prove the following properties of definite integrals : int_(0)^(a)f(x)dx=int_(0)^(a)f(a-x)dx

Prove that int_(0)^(a)f(x)dx=int_(0)^(a)f(a-x)dx

prove that : int_(0)^(2a) f(x)dx = int_(0)^(a) f(x)dx + int_(0)^(a)f(2a-x)dx

If |int_(a)^(b)f(x)dx|=int_(a)^(b)|f(x)|dx,a

Show that int_(0)^(a)f(x)g(x)dx=2int_(0)^(a)f(x)dx if f and g defined as f(x)=f(a-x) and g(x)quad +g(a-x)=4