Home
Class 12
MATHS
int(0)^(pi)log sin^(2)x dx=...

`int_(0)^(pi)log sin^(2)x dx=`

A

`2pilog_(e)(1/2)`

B

`pi log_(e)2`

C

`(pi)/2log_(e)(1/2)`

D

`pilog_(e)(1/2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_0^{\pi} \log(\sin^2 x) \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral Using the logarithmic property \( \log(a^b) = b \log(a) \), we can rewrite the integral: \[ I = \int_0^{\pi} \log(\sin^2 x) \, dx = \int_0^{\pi} 2 \log(\sin x) \, dx = 2 \int_0^{\pi} \log(\sin x) \, dx \] ### Step 2: Use Symmetry Property We can use the property of definite integrals: \[ \int_0^{a} f(x) \, dx = \int_0^{a} f(a - x) \, dx \] For our case, let \( f(x) = \log(\sin x) \). Then: \[ \int_0^{\pi} \log(\sin x) \, dx = \int_0^{\pi} \log(\sin(\pi - x)) \, dx \] Since \( \sin(\pi - x) = \sin x \), we have: \[ \int_0^{\pi} \log(\sin(\pi - x)) \, dx = \int_0^{\pi} \log(\sin x) \, dx \] Thus, we can conclude: \[ \int_0^{\pi} \log(\sin x) \, dx = \int_0^{\pi} \log(\sin x) \, dx \] ### Step 3: Combine the Integrals Now, we can combine the two integrals: \[ 2I = \int_0^{\pi} \log(\sin x) \, dx + \int_0^{\pi} \log(\sin(\pi - x)) \, dx = \int_0^{\pi} \log(\sin x) \, dx + \int_0^{\pi} \log(\sin x) \, dx = 2 \int_0^{\pi} \log(\sin x) \, dx \] Thus, we have: \[ I = 2 \int_0^{\pi} \log(\sin x) \, dx \] ### Step 4: Change of Variable Now, we can change the variable in the integral: Let \( x = \frac{\pi}{2} - t \), then \( dx = -dt \). The limits change from \( x = 0 \) to \( x = \pi \) which corresponds to \( t = \frac{\pi}{2} \) to \( t = -\frac{\pi}{2} \). Thus: \[ \int_0^{\pi} \log(\sin x) \, dx = \int_{\frac{\pi}{2}}^{-\frac{\pi}{2}} \log(\sin(\frac{\pi}{2} - t)) (-dt) = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \log(\cos t) \, dt \] ### Step 5: Combine the Results Now we have: \[ I = 2 \left( \int_0^{\pi} \log(\sin x) \, dx + \int_0^{\pi} \log(\cos x) \, dx \right) \] Using the known result: \[ \int_0^{\frac{\pi}{2}} \log(\sin x) \, dx = \int_0^{\frac{\pi}{2}} \log(\cos x) \, dx = -\frac{\pi}{2} \log 2 \] Thus: \[ I = 2 \left( -\frac{\pi}{2} \log 2 + -\frac{\pi}{2} \log 2 \right) = 2 \left( -\pi \log 2 \right) = -2\pi \log 2 \] ### Final Result Therefore, the final result is: \[ I = -2\pi \log 2 \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|148 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos
  • CONTINUITY

    TARGET PUBLICATION|Exercise Evaluation Test|10 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi) x log sinx\ dx

The value of the integral int_(0)^(pi)x log sin x dx is

Prove that: int_(0)^( pi/2)log(sin^(3)x cos^(4)x)backslash dx=-(7 pi)/(2)log2

Prove that int_(0)^(pi//2)log (sinx)dx=int_(0)^(pi//2) log (cosx)dx=-(pi)/(2) log 2 .

int_(0)^((pi)/(2))log sin xdx=int_(0)^((pi)/(2))log cos xdx=(1)/(2)(pi)log((1)/(2))

int_ (0) ^ (pi) x log sin xdx

int_(0)^((pi)/(2))log(sin2x)dx

Show that int_(0)^((pi)/(2))log(sin2x)dx=-(pi)/(2)(log2)