Home
Class 12
MATHS
If int(-1)^(1)f(x)dx=0 then...

If `int_(-1)^(1)f(x)dx=0` then

A

`f(-x)=f(x)`

B

`f(-x)=-f(x)`

C

`f(x)=2f(x)`

D

`f(-x)=2f(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given integral condition: \[ \int_{-1}^{1} f(x) \, dx = 0 \] ### Step 1: Use the property of definite integrals We can apply the property of definite integrals that states: \[ \int_{-a}^{a} f(x) \, dx = \int_{-a}^{a} f(-x) \, dx \] This property is particularly useful because it allows us to relate the function \( f(x) \) with \( f(-x) \). ### Step 2: Express the integral in terms of \( f(-x) \) Using the property mentioned above, we can write: \[ \int_{-1}^{1} f(x) \, dx = \int_{-1}^{1} f(-x) \, dx \] Since we know that: \[ \int_{-1}^{1} f(x) \, dx = 0 \] It follows that: \[ \int_{-1}^{1} f(-x) \, dx = 0 \] ### Step 3: Combine the two integrals Now, we can combine the two integrals: \[ \int_{-1}^{1} f(x) \, dx + \int_{-1}^{1} f(-x) \, dx = 0 + 0 = 0 \] This can be rewritten as: \[ \int_{-1}^{1} \left( f(x) + f(-x) \right) \, dx = 0 \] ### Step 4: Analyze the integrand For the integral of \( f(x) + f(-x) \) to equal zero over the symmetric interval \([-1, 1]\), it must be that: \[ f(x) + f(-x) = 0 \] This implies: \[ f(-x) = -f(x) \] ### Conclusion The conclusion we reach is that the function \( f(x) \) is an odd function.
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|148 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos
  • CONTINUITY

    TARGET PUBLICATION|Exercise Evaluation Test|10 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos

Similar Questions

Explore conceptually related problems

A continous function f(x) is such that f(3x)=2f(x), AA x in R . If int_(0)^(1)f(x)dx=1, then int_(1)^(3)f(x)dx is equal to

Q.if int_(0)^(100)(f(x)dx=a, then sum_(r=1)^(100)(int_(0)^(1)(f(r-1+x)dx))=

If int_(0)^(100) f(x)dx=7, then sum_(r=1)^(100)int_(0)^(1)(r-1+x)dx= _________.

Suppose f is such that f(-x)=-f(x) for every real x and int_(0)^(1)f(x)dx=5, then int_(-1)^(0)f(t)dt=

If int_(0)^(1)f(x)dx=1 and int_(1)^(2)f(y)dy=2 , then int_(0)^(2)f(z)dz=

If int_(-2)^(5)f(x)dx=4 and int_(0)^(5){1+f(x)}backslash dx=7, then what is int_(-2)^(0)f(x)backslash dx equal to?

If f(a-x)=f(x) and int_(0)^(a//2)f(x)dx=p , then : int_(0)^(a)f(x)dx=

int_(0)^(a)f(2a-x)dx=m and int_(0)^(a)f(x)dx=n then int_(0)^(2a)f(x)dx is equal to