Home
Class 12
MATHS
int(-1)^(1)log((1+x)/(1-x))dx=...

`int_(-1)^(1)log((1+x)/(1-x))dx=`

A

2

B

1

C

0

D

-1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{-1}^{1} \log\left(\frac{1+x}{1-x}\right) \, dx \), we can use the property of definite integrals that states: \[ \int_{-a}^{a} f(x) \, dx = \int_{0}^{a} \left( f(x) + f(-x) \right) \, dx \] ### Step 1: Define the function Let \( f(x) = \log\left(\frac{1+x}{1-x}\right) \). ### Step 2: Find \( f(-x) \) Now, we need to compute \( f(-x) \): \[ f(-x) = \log\left(\frac{1 - x}{1 + x}\right) \] ### Step 3: Combine \( f(x) \) and \( f(-x) \) Next, we add \( f(x) \) and \( f(-x) \): \[ f(x) + f(-x) = \log\left(\frac{1+x}{1-x}\right) + \log\left(\frac{1-x}{1+x}\right) \] Using the property of logarithms \( \log a + \log b = \log(ab) \): \[ f(x) + f(-x) = \log\left(\frac{1+x}{1-x} \cdot \frac{1-x}{1+x}\right) = \log(1) = 0 \] ### Step 4: Set up the integral Now we can set up the integral: \[ I = \int_{-1}^{1} f(x) \, dx = \int_{0}^{1} \left( f(x) + f(-x) \right) \, dx = \int_{0}^{1} 0 \, dx \] ### Step 5: Evaluate the integral Since the integral of zero over any interval is zero: \[ I = 0 \] ### Conclusion Thus, the value of the integral is: \[ \int_{-1}^{1} \log\left(\frac{1+x}{1-x}\right) \, dx = 0 \] ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|148 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos
  • CONTINUITY

    TARGET PUBLICATION|Exercise Evaluation Test|10 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos

Similar Questions

Explore conceptually related problems

int_(-1)^(1)log((4-x)/(4+x))dx=

I=int_(-1)^(1)log((2-x)/(2+x))dx

int_(-1)^(1)log[(a-x)/(a+x)]dx

int_(-1)^1 log((3-x)/(3+x)) dx

The value of int_(-1)^(1) log ((x-1)/(x+1))dx is

int_(0)^(1)(log(1+x))/(1+x)dx

int_(0)^(1)(log(1-x))/(x)dx

Show that :int_(0)^(1)(log x)/((1+x))dx=-int_(0)^(1)(log(1+x))/(x)dx

int_(0)^(1)(log(1+x))/(1+x^(2))dx

int(1)/(x)log((1)/(x))dx=