Home
Class 12
MATHS
int(0)^(pi//2)(sin x cos x dx)/(cos^(2)x...

`int_(0)^(pi//2)(sin x cos x dx)/(cos^(2)x+3cosx+2)=`

A

`log(8/9)`

B

`log(9/8)`

C

`log(8xx9)`

D

`log(3/8)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sin x \cos x}{\cos^2 x + 3 \cos x + 2} \, dx, \] we will follow these steps: ### Step 1: Substitution Let \( t = \cos x \). Then, the differential \( dt = -\sin x \, dx \) or \( \sin x \, dx = -dt \). ### Step 2: Change the limits of integration When \( x = 0 \), \( t = \cos(0) = 1 \). When \( x = \frac{\pi}{2} \), \( t = \cos\left(\frac{\pi}{2}\right) = 0 \). ### Step 3: Rewrite the integral Substituting \( t \) into the integral, we have: \[ I = \int_{1}^{0} \frac{-t}{t^2 + 3t + 2} \, dt = \int_{0}^{1} \frac{t}{t^2 + 3t + 2} \, dt. \] ### Step 4: Factor the denominator The quadratic \( t^2 + 3t + 2 \) can be factored as: \[ t^2 + 3t + 2 = (t + 1)(t + 2). \] ### Step 5: Partial fraction decomposition We can express \[ \frac{t}{(t + 1)(t + 2)} = \frac{A}{t + 1} + \frac{B}{t + 2}. \] Multiplying through by the denominator \((t + 1)(t + 2)\), we get: \[ t = A(t + 2) + B(t + 1). \] ### Step 6: Solve for A and B Expanding and rearranging gives: \[ t = At + 2A + Bt + B \implies t = (A + B)t + (2A + B). \] By comparing coefficients, we have: 1. \( A + B = 1 \) 2. \( 2A + B = 0 \) From the first equation, \( B = 1 - A \). Substituting into the second equation: \[ 2A + (1 - A) = 0 \implies A + 1 = 0 \implies A = -1. \] Then, substituting back, we find: \[ B = 1 - (-1) = 2. \] Thus, we can rewrite the integral as: \[ I = \int_{0}^{1} \left( \frac{-1}{t + 1} + \frac{2}{t + 2} \right) dt. \] ### Step 7: Integrate Now we can integrate term by term: \[ I = \int_{0}^{1} \left( -\frac{1}{t + 1} \right) dt + 2 \int_{0}^{1} \left( \frac{1}{t + 2} \right) dt. \] Calculating these integrals: 1. \( \int -\frac{1}{t + 1} dt = -\ln(t + 1) \) 2. \( \int \frac{1}{t + 2} dt = \ln(t + 2) \) Thus, \[ I = \left[ -\ln(t + 1) \right]_{0}^{1} + 2 \left[ \ln(t + 2) \right]_{0}^{1}. \] Calculating the limits: - For \( -\ln(t + 1) \): \[ -\ln(2) - (-\ln(1)) = -\ln(2). \] - For \( 2\ln(t + 2) \): \[ 2\left( \ln(3) - \ln(2) \right) = 2\ln\left(\frac{3}{2}\right). \] ### Step 8: Combine results Putting it all together: \[ I = -\ln(2) + 2\ln\left(\frac{3}{2}\right) = -\ln(2) + \ln\left(\frac{9}{4}\right) = \ln\left(\frac{9}{4}\right) - \ln(2) = \ln\left(\frac{9}{8}\right). \] ### Final Result Thus, the value of the integral is: \[ I = \ln\left(\frac{9}{8}\right). \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|148 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos
  • CONTINUITY

    TARGET PUBLICATION|Exercise Evaluation Test|10 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) x sin x cos x dx

int_(0)^( pi/2)sin^(2)x cos x dx

int_(0)^(pi//2) x sin cos x dx=?

The value int_(0)^((pi)/(2))(sin x cos x)/(cos^(2)x+3cos x+2)dx is

int_(0)^(pi/2)(sin^(2)x*cos x)dx=

int_(0)^( pi/2)(sin x)/(1+cos x)dx

int_(0)^((pi)/(2))(x sin x*cos x)dx

"int_(0)^( pi/2)(|sin x|+|cos x|)dx

int_(0)^(pi) x sin x cos^(2)x\ dx