Home
Class 12
MATHS
int(0)^((pi)/2)(cos2x)/(cosx+sinx)dx=...

`int_(0)^((pi)/2)(cos2x)/(cosx+sinx)dx=`

A

`-1`

B

1

C

0

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\cos 2x}{\cos x + \sin x} \, dx, \] we will use a property of definite integrals. The property states that if \( I = \int_{a}^{b} f(x) \, dx \), then \[ I = \int_{a}^{b} f(a + b - x) \, dx. \] In our case, we have \( a = 0 \) and \( b = \frac{\pi}{2} \). Thus, we can rewrite the integral as follows: 1. **Step 1: Apply the property** We apply the property to our integral: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\cos 2\left(\frac{\pi}{2} - x\right)}{\cos\left(\frac{\pi}{2} - x\right) + \sin\left(\frac{\pi}{2} - x\right)} \, dx. \] 2. **Step 2: Simplify the expression** Now, we simplify the terms inside the integral: - \( \cos 2\left(\frac{\pi}{2} - x\right) = \cos(\pi - 2x) = -\cos 2x \) - \( \cos\left(\frac{\pi}{2} - x\right) = \sin x \) - \( \sin\left(\frac{\pi}{2} - x\right) = \cos x \) Therefore, we can rewrite the integral as: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{-\cos 2x}{\sin x + \cos x} \, dx. \] 3. **Step 3: Combine the two integrals** Now we have two expressions for \( I \): \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\cos 2x}{\cos x + \sin x} \, dx \] and \[ I = \int_{0}^{\frac{\pi}{2}} \frac{-\cos 2x}{\sin x + \cos x} \, dx. \] Adding these two equations together: \[ 2I = \int_{0}^{\frac{\pi}{2}} \left( \frac{\cos 2x}{\cos x + \sin x} - \frac{\cos 2x}{\cos x + \sin x} \right) dx = 0. \] 4. **Step 4: Solve for \( I \)** From the equation \( 2I = 0 \), we can conclude that: \[ I = 0. \] Thus, the value of the integral is \[ \boxed{0}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise CRITICAL THINKING|115 Videos
  • CONTINUITY

    TARGET PUBLICATION|Exercise Evaluation Test|10 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos

Similar Questions

Explore conceptually related problems

int_(0)^( pi/2)(cosx/(cosx+sinx))dx

int(cos2x)/(cosx-sinx)dx=

Evaluate : (i) int_(0)^(pi//2)(cosx)/((cos\ (x)/(2)+sin\ (x)/(2)))dx (ii) int_(0)^(pi//2)(cosx)/((1+cosx+sinx))dx

Evaluate : int_(0)^(pi//2)(cosx)/((3cosx+sinx))dx .

Evaluate the following: int_0^(pi/2) cosx/(cosx+sinx)dx

Let l= int_(0)^(pi//2)(cosx)/(a cos x+ b sinx)dx and J=int_(0)^(pi//2)(sin x)/(a cosx+b sin x )dx , where a gt 0 and b gt 0 Compute the values of l and j

int_(0)^(pi//2)(dx)/((cosx+2sinx))

Evaluate int_0^(pi/2)cosx/(1+cosx+sinx)dx

int_(0)^((pi)/2)(cos^(3)x)/(sinx+cosx)dx

int_(0)^(pi//2)(cosx)/((sinx+cosx))dx=(pi)/(4)

TARGET PUBLICATION-DEFINITE INTEGRALS-COMPETITIVE THINKING
  1. If int(0)^(1) tan^(-1) x dx = p , then the value of int(0)^(1) tan^(-1...

    Text Solution

    |

  2. int(-pi/4)^(pi/4)(dx)/(1+cos2x) is

    Text Solution

    |

  3. int(0)^((pi)/2)(cos2x)/(cosx+sinx)dx=

    Text Solution

    |

  4. int(0)^((pi)/2)cos^(6)x dx=

    Text Solution

    |

  5. int(-1)^(0) (dx)/(x^(2) + 2x + 2 ) is equal to

    Text Solution

    |

  6. int(0)^(sqrt(2))sqrt(2-x^(2))dx=?

    Text Solution

    |

  7. int(0)^(1) (dx)/(e^(x) +e^(-x)) dx is equal to

    Text Solution

    |

  8. 3a int(0)^(1) ((ax-1)/(a-1))^(2) dx is equal to

    Text Solution

    |

  9. int (0) ^(pi//4) sin (x- [x])d (x-[x]) is equal to

    Text Solution

    |

  10. The function L(x)=int(1)^(x)(dt)/t satisfies the equation

    Text Solution

    |

  11. If overset(b)underset(a)int {f(x)-3x}dx=a^(2)-b^(2), then the value of...

    Text Solution

    |

  12. The value of the integral l = int(0)^(1) x(1-x)^(n) dx is

    Text Solution

    |

  13. int(0)^(pi//4)(cosx-sinx)dx+int(pi//4)^(5pi//4)(sinx-cosx)dx+int(2pi)^...

    Text Solution

    |

  14. Let d/(dx)F(x)=((e^(sinx))/x),x > 0. If int1^4 3/x e^s in x^3dx=F(k)-...

    Text Solution

    |

  15. Suppose that F (x) is an antiderivative of f (x)=sinx/x,x>0 , then...

    Text Solution

    |

  16. The value of integral int (1//pi)^(2//pi)(sin(1/x))/(x^(2))dx=

    Text Solution

    |

  17. The value of the integral int(0)^((pi)/4)(sqrt(tanx))/(sinx cos x) dx ...

    Text Solution

    |

  18. If I(n) = int (0)^(pi//4) tan^(n) theta " " d theta, "then "I(8)+I(6)=

    Text Solution

    |

  19. If g(1)=g(2), then int(1)^(2)[f{g(x)}]^(-1)f'{g(x)}g'(x)dx is equal to

    Text Solution

    |

  20. If int(0)^(k)(dx)/(2+18x^(2))=(pi)/(24), then the value of k is

    Text Solution

    |