Home
Class 12
MATHS
int(0)^((pi)/2)cos^(6)x dx=...

`int_(0)^((pi)/2)cos^(6)x dx=`

A

`(5pi)/16`

B

`(5pi)/32`

C

`5/16`

D

`5/32`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} \cos^6 x \, dx \), we can use the reduction formula for integrals of the form \( \int_{0}^{\frac{\pi}{2}} \cos^n x \, dx \). ### Step-by-Step Solution: 1. **Identify the Integral**: We need to evaluate: \[ I = \int_{0}^{\frac{\pi}{2}} \cos^6 x \, dx \] 2. **Use the Reduction Formula**: The reduction formula for the integral of \( \cos^n x \) is given by: \[ \int_{0}^{\frac{\pi}{2}} \cos^n x \, dx = \frac{n-1}{n} \int_{0}^{\frac{\pi}{2}} \cos^{n-2} x \, dx \] For our case, \( n = 6 \): \[ I = \frac{6-1}{6} \int_{0}^{\frac{\pi}{2}} \cos^4 x \, dx = \frac{5}{6} I_4 \] 3. **Calculate \( I_4 \)**: Now we need to find \( I_4 = \int_{0}^{\frac{\pi}{2}} \cos^4 x \, dx \): \[ I_4 = \frac{4-1}{4} \int_{0}^{\frac{\pi}{2}} \cos^2 x \, dx = \frac{3}{4} I_2 \] 4. **Calculate \( I_2 \)**: Next, we find \( I_2 = \int_{0}^{\frac{\pi}{2}} \cos^2 x \, dx \): \[ I_2 = \frac{2-1}{2} \int_{0}^{\frac{\pi}{2}} \cos^0 x \, dx = \frac{1}{2} \cdot \frac{\pi}{2} = \frac{\pi}{4} \] 5. **Substitute Back**: Now substitute \( I_2 \) back into the equation for \( I_4 \): \[ I_4 = \frac{3}{4} \cdot \frac{\pi}{4} = \frac{3\pi}{16} \] 6. **Final Calculation for \( I \)**: Substitute \( I_4 \) back into the equation for \( I \): \[ I = \frac{5}{6} \cdot \frac{3\pi}{16} = \frac{15\pi}{96} = \frac{5\pi}{32} \] ### Final Result: Thus, the value of the integral is: \[ \int_{0}^{\frac{\pi}{2}} \cos^6 x \, dx = \frac{5\pi}{32} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise CRITICAL THINKING|115 Videos
  • CONTINUITY

    TARGET PUBLICATION|Exercise Evaluation Test|10 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos

Similar Questions

Explore conceptually related problems

If A=int_((rho)/(2))^((pi)/(2))cos(sin x)dxB=int_(0)^((pi)/(2))sin(cos x)dx and C=int_(0)^((pi)/(2))cos(x)dx

int_(-pi//2)^(pi//2)cos^(6)x dx=

If int _(0)^(pi//2) sin^(6) dx = (5pi)/32 , then the value of int _(-pi)^(pi) (sin ^(6) x + cos^(6)x)dx is

If A = int_(0)^((pi)/(2))(sin^(3)x)/(1+cos^(2)s)dx and B=int_(0)^((pi)/(2))(cos^(2)x)/(1+sin^(2)x)dx , then (2A)/(B) is equal to

int_(pi//6)^(pi//3)cos^(2)x dx=

If A=int_(0)^( pi)(sin x)/(x^(2))dx, then int_(0)^((pi)/(2))(cos(2x))/(x)dx, is equal to:

Find I=int_(0)^((3 pi)/(2))cos^(4)(3x)sin^(2)(6x)dx

TARGET PUBLICATION-DEFINITE INTEGRALS-COMPETITIVE THINKING
  1. int(-pi/4)^(pi/4)(dx)/(1+cos2x) is

    Text Solution

    |

  2. int(0)^((pi)/2)(cos2x)/(cosx+sinx)dx=

    Text Solution

    |

  3. int(0)^((pi)/2)cos^(6)x dx=

    Text Solution

    |

  4. int(-1)^(0) (dx)/(x^(2) + 2x + 2 ) is equal to

    Text Solution

    |

  5. int(0)^(sqrt(2))sqrt(2-x^(2))dx=?

    Text Solution

    |

  6. int(0)^(1) (dx)/(e^(x) +e^(-x)) dx is equal to

    Text Solution

    |

  7. 3a int(0)^(1) ((ax-1)/(a-1))^(2) dx is equal to

    Text Solution

    |

  8. int (0) ^(pi//4) sin (x- [x])d (x-[x]) is equal to

    Text Solution

    |

  9. The function L(x)=int(1)^(x)(dt)/t satisfies the equation

    Text Solution

    |

  10. If overset(b)underset(a)int {f(x)-3x}dx=a^(2)-b^(2), then the value of...

    Text Solution

    |

  11. The value of the integral l = int(0)^(1) x(1-x)^(n) dx is

    Text Solution

    |

  12. int(0)^(pi//4)(cosx-sinx)dx+int(pi//4)^(5pi//4)(sinx-cosx)dx+int(2pi)^...

    Text Solution

    |

  13. Let d/(dx)F(x)=((e^(sinx))/x),x > 0. If int1^4 3/x e^s in x^3dx=F(k)-...

    Text Solution

    |

  14. Suppose that F (x) is an antiderivative of f (x)=sinx/x,x>0 , then...

    Text Solution

    |

  15. The value of integral int (1//pi)^(2//pi)(sin(1/x))/(x^(2))dx=

    Text Solution

    |

  16. The value of the integral int(0)^((pi)/4)(sqrt(tanx))/(sinx cos x) dx ...

    Text Solution

    |

  17. If I(n) = int (0)^(pi//4) tan^(n) theta " " d theta, "then "I(8)+I(6)=

    Text Solution

    |

  18. If g(1)=g(2), then int(1)^(2)[f{g(x)}]^(-1)f'{g(x)}g'(x)dx is equal to

    Text Solution

    |

  19. If int(0)^(k)(dx)/(2+18x^(2))=(pi)/(24), then the value of k is

    Text Solution

    |

  20. int(-1)^(0) (dx)/(x^(2) + 2x + 2 ) is equal to

    Text Solution

    |