Home
Class 12
MATHS
int(0)^(pi//4)(cosx-sinx)dx+int(pi//4)^(...

`int_(0)^(pi//4)(cosx-sinx)dx+int_(pi//4)^(5pi//4)(sinx-cosx)dx+int_(2pi)^(pi//4)(cosx-sinx)dx` is equal to

A

`sqrt(2)-2`

B

`2sqrt(2)-2`

C

`3sqrt(2)-2`

D

`4sqrt(2)-2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the following expression: \[ \int_{0}^{\frac{\pi}{4}} (\cos x - \sin x) \, dx + \int_{\frac{\pi}{4}}^{\frac{5\pi}{4}} (\sin x - \cos x) \, dx + \int_{2\pi}^{\frac{\pi}{4}} (\cos x - \sin x) \, dx \] ### Step 1: Evaluate the first integral \[ \int_{0}^{\frac{\pi}{4}} (\cos x - \sin x) \, dx \] The integral can be split into two parts: \[ \int_{0}^{\frac{\pi}{4}} \cos x \, dx - \int_{0}^{\frac{\pi}{4}} \sin x \, dx \] Calculating each part: 1. \(\int \cos x \, dx = \sin x\) 2. \(\int \sin x \, dx = -\cos x\) Now applying the limits: \[ \left[ \sin x \right]_{0}^{\frac{\pi}{4}} - \left[ -\cos x \right]_{0}^{\frac{\pi}{4}} = \left( \sin \frac{\pi}{4} - \sin 0 \right) - \left( -\cos \frac{\pi}{4} + \cos 0 \right) \] Calculating the values: \[ \sin \frac{\pi}{4} = \frac{1}{\sqrt{2}}, \quad \sin 0 = 0, \quad \cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}, \quad \cos 0 = 1 \] Thus, we have: \[ \frac{1}{\sqrt{2}} - 0 - \left( -\frac{1}{\sqrt{2}} + 1 \right) = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} - 1 = \frac{2}{\sqrt{2}} - 1 = \sqrt{2} - 1 \] ### Step 2: Evaluate the second integral \[ \int_{\frac{\pi}{4}}^{\frac{5\pi}{4}} (\sin x - \cos x) \, dx \] Again, we can split it: \[ \int_{\frac{\pi}{4}}^{\frac{5\pi}{4}} \sin x \, dx - \int_{\frac{\pi}{4}}^{\frac{5\pi}{4}} \cos x \, dx \] Calculating each part: 1. \(\int \sin x \, dx = -\cos x\) 2. \(\int \cos x \, dx = \sin x\) Now applying the limits: \[ \left[ -\cos x \right]_{\frac{\pi}{4}}^{\frac{5\pi}{4}} - \left[ \sin x \right]_{\frac{\pi}{4}}^{\frac{5\pi}{4}} = \left( -\cos \frac{5\pi}{4} + \cos \frac{\pi}{4} \right) - \left( \sin \frac{5\pi}{4} - \sin \frac{\pi}{4} \right) \] Calculating the values: \[ \cos \frac{5\pi}{4} = -\frac{1}{\sqrt{2}}, \quad \cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}, \quad \sin \frac{5\pi}{4} = -\frac{1}{\sqrt{2}}, \quad \sin \frac{\pi}{4} = \frac{1}{\sqrt{2}} \] Thus, we have: \[ \left( -(-\frac{1}{\sqrt{2}}) + \frac{1}{\sqrt{2}} \right) - \left( -\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \right) = \left( \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \right) - \left( -\frac{2}{\sqrt{2}} \right) = \sqrt{2} + \sqrt{2} = 2\sqrt{2} \] ### Step 3: Evaluate the third integral \[ \int_{2\pi}^{\frac{\pi}{4}} (\cos x - \sin x) \, dx \] This integral can be rewritten by reversing the limits: \[ -\int_{\frac{\pi}{4}}^{2\pi} (\cos x - \sin x) \, dx \] Calculating: \[ -\left( \int_{\frac{\pi}{4}}^{2\pi} \cos x \, dx - \int_{\frac{\pi}{4}}^{2\pi} \sin x \, dx \right) \] Calculating each part: 1. \(\int \cos x \, dx = \sin x\) 2. \(\int \sin x \, dx = -\cos x\) Now applying the limits: \[ -\left( \left[ \sin x \right]_{\frac{\pi}{4}}^{2\pi} - \left[ -\cos x \right]_{\frac{\pi}{4}}^{2\pi} \right) = -\left( \left( \sin 2\pi - \sin \frac{\pi}{4} \right) - \left( -\cos 2\pi + \cos \frac{\pi}{4} \right) \right) \] Calculating the values: \[ \sin 2\pi = 0, \quad \sin \frac{\pi}{4} = \frac{1}{\sqrt{2}}, \quad \cos 2\pi = 1, \quad \cos \frac{\pi}{4} = \frac{1}{\sqrt{2}} \] Thus, we have: \[ -\left( 0 - \frac{1}{\sqrt{2}} - ( -1 + \frac{1}{\sqrt{2}} ) \right) = -\left( -\frac{1}{\sqrt{2}} + 1 - \frac{1}{\sqrt{2}} \right) = -\left( 1 - \frac{2}{\sqrt{2}} \right) = -1 + \sqrt{2} \] ### Step 4: Combine all results Now we combine all three integrals: \[ (\sqrt{2} - 1) + (2\sqrt{2}) + (-1 + \sqrt{2}) \] Combining like terms: \[ \sqrt{2} + 2\sqrt{2} + \sqrt{2} - 1 - 1 = 4\sqrt{2} - 2 \] ### Final Answer Thus, the final result is: \[ \boxed{4\sqrt{2} - 2} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise CRITICAL THINKING|115 Videos
  • CONTINUITY

    TARGET PUBLICATION|Exercise Evaluation Test|10 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos

Similar Questions

Explore conceptually related problems

int _(0)^(pi//2) (cosx)/(1+sinx)dx is equal to

int_0^(pi/2) (Cosx - Sinx)dx

int_0^(pi/2) cosx/(1+sinx)dx

int_(0)^(pi//2) cosx\ e^(sinx)\ dx is equal to

int_(0)^( pi/2)(cosx/(2+sinx))dx

int_(0)^( pi/2)(cosx)/(1+sinx)dx

int_(pi//4)^(3pi//4)(dx)/(1+cosx) is equal to

int_(pi//4)^(3pi//4)(dx)/(1+cosx) is equal to

int_(pi//4)^(3pi//4)(xsinx)/(1+sinx)dx

TARGET PUBLICATION-DEFINITE INTEGRALS-COMPETITIVE THINKING
  1. If overset(b)underset(a)int {f(x)-3x}dx=a^(2)-b^(2), then the value of...

    Text Solution

    |

  2. The value of the integral l = int(0)^(1) x(1-x)^(n) dx is

    Text Solution

    |

  3. int(0)^(pi//4)(cosx-sinx)dx+int(pi//4)^(5pi//4)(sinx-cosx)dx+int(2pi)^...

    Text Solution

    |

  4. Let d/(dx)F(x)=((e^(sinx))/x),x > 0. If int1^4 3/x e^s in x^3dx=F(k)-...

    Text Solution

    |

  5. Suppose that F (x) is an antiderivative of f (x)=sinx/x,x>0 , then...

    Text Solution

    |

  6. The value of integral int (1//pi)^(2//pi)(sin(1/x))/(x^(2))dx=

    Text Solution

    |

  7. The value of the integral int(0)^((pi)/4)(sqrt(tanx))/(sinx cos x) dx ...

    Text Solution

    |

  8. If I(n) = int (0)^(pi//4) tan^(n) theta " " d theta, "then "I(8)+I(6)=

    Text Solution

    |

  9. If g(1)=g(2), then int(1)^(2)[f{g(x)}]^(-1)f'{g(x)}g'(x)dx is equal to

    Text Solution

    |

  10. If int(0)^(k)(dx)/(2+18x^(2))=(pi)/(24), then the value of k is

    Text Solution

    |

  11. int(-1)^(0) (dx)/(x^(2) + 2x + 2 ) is equal to

    Text Solution

    |

  12. The value of int(0)^(1)(x^(2))/(1+x^(2))dx is

    Text Solution

    |

  13. The value of int0^1 (x^4+1)/(x^2+1)dx is

    Text Solution

    |

  14. int (0)^(3) (3x+1)/(x^(2)+9) dx =

    Text Solution

    |

  15. The value of int0^1(x^4(1-x)^4)/(1+x^2)\ dx is

    Text Solution

    |

  16. int0^1sqrt((1-x)/(1+x))dx

    Text Solution

    |

  17. int(-1)^(1)sqrt((1-x)/(1+x))dx=

    Text Solution

    |

  18. Evaluate the following : int(0)^(pi//2)(1)/(a^(2)sin^(2)x+b^(2)cos^...

    Text Solution

    |

  19. int(0)^(1//2)(dx)/((1+x^(2))sqrt(1-x^(2))) is equal to

    Text Solution

    |

  20. int(0)^(pi//2)(dx)/(2+cosx)=

    Text Solution

    |