Home
Class 12
MATHS
The value of the integral int(0)^((pi)/4...

The value of the integral `int_(0)^((pi)/4)(sqrt(tanx))/(sinx cos x) dx` equals

A

1

B

2

C

0

D

4

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise CRITICAL THINKING|115 Videos
  • CONTINUITY

    TARGET PUBLICATION|Exercise Evaluation Test|10 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(0)^(pi/2)(cos x)/((2+sin x)(4+sin x))dx equals

Given int_(0)^(pi//2)(dx)/(1+sinx+cosx)=A . Then the value of the definite integral int_(0)^(pi//2)(sinx)/(1+sinx+cosx)dx is equal to

The value of the integral int_(0)^(pi//4) (sinx+cosx)/(3+sin2x)dx ,is

The value of the definite integral int_(0)^((pi)/(3))ln(1+sqrt(3)tan x)dx equals -

int_(0)^(pi//2) (sinx )/(sin x + cos x ) dx=

The value of the integral int_(0)^(pi//2)(sqrt(cotx))/(sqrt(cotx)+sqrt(tanx))dx is

The value of the integral int_(0)^(pi//2)log |tanx| dx is

The value of the definite integral int_(0)^(pi//3) ln (1+ sqrt3tan x )dx equals

The value of the integral int_(0)^(pi//4) sin^(-4)x dx , is