Home
Class 12
MATHS
The value of int(0)^(1)(x^(2))/(1+x^(2))...

The value of `int_(0)^(1)(x^(2))/(1+x^(2))dx` is

A

`1-(pi)/4`

B

`(pi)/4-1`

C

`1-(pi)/2`

D

`0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_0^1 \frac{x^2}{1+x^2} \, dx \), we can follow these steps: ### Step 1: Rewrite the integrand We can rewrite the integrand by adding and subtracting 1 in the numerator: \[ I = \int_0^1 \frac{x^2 + 1 - 1}{1+x^2} \, dx = \int_0^1 \left( \frac{x^2 + 1}{1+x^2} - \frac{1}{1+x^2} \right) \, dx \] This simplifies to: \[ I = \int_0^1 \left( 1 - \frac{1}{1+x^2} \right) \, dx \] ### Step 2: Split the integral Now we can split the integral into two parts: \[ I = \int_0^1 1 \, dx - \int_0^1 \frac{1}{1+x^2} \, dx \] ### Step 3: Evaluate the first integral The first integral is straightforward: \[ \int_0^1 1 \, dx = [x]_0^1 = 1 - 0 = 1 \] ### Step 4: Evaluate the second integral The second integral can be evaluated using the formula for the integral of \( \frac{1}{1+x^2} \): \[ \int \frac{1}{1+x^2} \, dx = \tan^{-1}(x) + C \] Thus, \[ \int_0^1 \frac{1}{1+x^2} \, dx = \left[ \tan^{-1}(x) \right]_0^1 = \tan^{-1}(1) - \tan^{-1}(0) = \frac{\pi}{4} - 0 = \frac{\pi}{4} \] ### Step 5: Combine the results Now we can combine the results of the two integrals: \[ I = 1 - \frac{\pi}{4} \] ### Final Result Thus, the value of the integral is: \[ I = 1 - \frac{\pi}{4} \] ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise CRITICAL THINKING|115 Videos
  • CONTINUITY

    TARGET PUBLICATION|Exercise Evaluation Test|10 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1)(2-x^(2))/(1+x^(2))dx=

int_(0)^(1) x^(2)/(x^(2)+1)dx=

The value of int_(0)^(1) x^(2) (1- x)^(9) dx is

int_(0)^(1) (x^(2))/(1+x^(2))dx is equal to

int_(0)^(1)(2x)/((1+x^(2)))dx

If int_(0)^(1)e^(-(x^(2)))dx=a, then find the value of int_(0)^(1)x^(2)e^(-(x^(2)))dx in terms of a

" 2."int_(0)^(1)(x^2)/(1+x^(3))dx

The value of int_(0)^(oo) (logx)/(1+x^(2))dx , is

int_(0)^(1)x^(2)sqrt(1-x^(2))dx=

int_(0)^(1)(dx)/((1+x^(2))