Home
Class 12
MATHS
int(-1)^(1)sqrt((1-x)/(1+x))dx=...

`int_(-1)^(1)sqrt((1-x)/(1+x))dx=`

A

`(pi)/4`

B

`(pi)/3`

C

`(pi)/2`

D

`pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{-1}^{1} \sqrt{\frac{1-x}{1+x}} \, dx \), we can use the property of definite integrals and symmetry. Here’s a step-by-step solution: ### Step 1: Define the Integral Let \[ I = \int_{-1}^{1} \sqrt{\frac{1-x}{1+x}} \, dx \] ### Step 2: Use the Property of Definite Integrals We can use the property that states: \[ \int_{-a}^{a} f(x) \, dx = \int_{0}^{a} f(x) \, dx + \int_{0}^{a} f(-x) \, dx \] In our case, we will find \( f(-x) \): \[ f(-x) = \sqrt{\frac{1+x}{1-x}} \] ### Step 3: Rewrite the Integral Now we can rewrite the integral \( I \) as: \[ I = \int_{0}^{1} \sqrt{\frac{1-x}{1+x}} \, dx + \int_{0}^{1} \sqrt{\frac{1+x}{1-x}} \, dx \] ### Step 4: Combine the Integrals Now, we can combine these two integrals: \[ I = \int_{0}^{1} \left( \sqrt{\frac{1-x}{1+x}} + \sqrt{\frac{1+x}{1-x}} \right) \, dx \] ### Step 5: Simplify the Expression To simplify the expression inside the integral, we can find a common denominator: \[ \sqrt{\frac{1-x}{1+x}} + \sqrt{\frac{1+x}{1-x}} = \frac{\sqrt{(1-x)^2} + \sqrt{(1+x)^2}}{\sqrt{(1+x)(1-x)}} \] This simplifies to: \[ \frac{(1-x) + (1+x)}{\sqrt{1-x^2}} = \frac{2}{\sqrt{1-x^2}} \] ### Step 6: Substitute Back into the Integral Now substituting back, we have: \[ I = \int_{0}^{1} \frac{2}{\sqrt{1-x^2}} \, dx \] ### Step 7: Evaluate the Integral The integral \( \int \frac{1}{\sqrt{1-x^2}} \, dx \) is a standard integral that evaluates to \( \sin^{-1}(x) \): \[ I = 2 \left[ \sin^{-1}(x) \right]_{0}^{1} = 2 \left( \frac{\pi}{2} - 0 \right) = \pi \] ### Final Result Thus, the value of the integral is: \[ I = \pi \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise CRITICAL THINKING|115 Videos
  • CONTINUITY

    TARGET PUBLICATION|Exercise Evaluation Test|10 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1)sqrt((1-x)/(1+x))dx

int_(0)^(1)sqrt((1-x)/(1+x))dx

int_(0)^(1) sqrt((1-x)/(1+x)) dx=?

int_(-1)^(1)x sqrt(1-x)dx

The value of int_(0)^(1) sqrt((1-x)/(1+x))dx is

int_(1)^(2)sqrt(1+x)dx

int_(0)^(1)sqrt((x)/(1-x^(3))) dx=

int sqrt((1-x)/(1+x))dx

int_(0)^(1)(sqrt(x))/(1+x^(2))dx

int_(0)^(1)sqrt((1-x)/(1+x))backslash dx