Home
Class 12
MATHS
int(0)^(pi//2)(dx)/(2+cosx)=...

`int_(0)^(pi//2)(dx)/(2+cosx)=`

A

`1/(sqrt(3))tan^(-1)(1/(sqrt(3)))`

B

`sqrt(3)tan^(-1)(sqrt(3))`

C

`2/(sqrt(3))tan^(-1)(1/(sqrt(3)))`

D

`2sqrt(3)tan^(-1)(sqrt(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_0^{\frac{\pi}{2}} \frac{dx}{2 + \cos x} \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int_0^{\frac{\pi}{2}} \frac{dx}{2 + \cos x} \] ### Step 2: Use the Weierstrass Substitution We can use the Weierstrass substitution, which is: \[ t = \tan\left(\frac{x}{2}\right) \] This gives us: \[ \cos x = \frac{1 - t^2}{1 + t^2} \quad \text{and} \quad dx = \frac{2}{1 + t^2} dt \] The limits change as follows: - When \( x = 0 \), \( t = \tan(0) = 0 \) - When \( x = \frac{\pi}{2} \), \( t = \tan\left(\frac{\pi}{4}\right) = 1 \) ### Step 3: Substitute into the Integral Substituting these into the integral, we have: \[ I = \int_0^1 \frac{\frac{2}{1 + t^2} dt}{2 + \frac{1 - t^2}{1 + t^2}} \] Simplifying the denominator: \[ 2 + \frac{1 - t^2}{1 + t^2} = \frac{2(1 + t^2) + 1 - t^2}{1 + t^2} = \frac{2 + t^2 + 1}{1 + t^2} = \frac{3 + t^2}{1 + t^2} \] Thus, the integral becomes: \[ I = \int_0^1 \frac{2}{1 + t^2} \cdot \frac{1 + t^2}{3 + t^2} dt = \int_0^1 \frac{2}{3 + t^2} dt \] ### Step 4: Solve the Integral Now we need to evaluate: \[ I = 2 \int_0^1 \frac{1}{3 + t^2} dt \] Using the formula for the integral of \( \frac{1}{a^2 + x^2} \): \[ \int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1}\left(\frac{x}{a}\right) + C \] In our case, \( a^2 = 3 \) so \( a = \sqrt{3} \): \[ I = 2 \cdot \frac{1}{\sqrt{3}} \left[ \tan^{-1}\left(\frac{t}{\sqrt{3}}\right) \right]_0^1 \] Calculating the limits: \[ = 2 \cdot \frac{1}{\sqrt{3}} \left( \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) - \tan^{-1}(0) \right) \] Since \( \tan^{-1}(0) = 0 \) and \( \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{6} \): \[ I = 2 \cdot \frac{1}{\sqrt{3}} \cdot \frac{\pi}{6} = \frac{\pi}{3\sqrt{3}} \] ### Final Result Thus, the value of the integral is: \[ \boxed{\frac{\pi}{3\sqrt{3}}} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise CRITICAL THINKING|115 Videos
  • CONTINUITY

    TARGET PUBLICATION|Exercise Evaluation Test|10 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi)(dx)/((5+4cosx))

int_(0)^(pi//2)(dx)/((cosx+2sinx))

Consider the integral I=int_(0)^(2pi)(dx)/(5-2cosx) Making the substitution "tan"1/2x=t , we have I=int_(0)^(2pi)(dx)/(5-2cosx)=int_(0)^(0)(2dt)/((1+t^(2))[5-2(1-t^(2))//(1+t^(2))])=0 The result is obviously wrong, since the integrand is positive and consequently the integral of this function cannot be equal to zero. Find the mistake.

int_(0)^(pi//2)(x)/(sinx+cosx)dx .

int_(0)^(pi)(dx)/((6-cosx))

Evaluate : int_(0)^(pi//2)(cosx)/((3cosx+sinx))dx .

Evaluate int_(0)^(pi//2)(x)/((sinx+cosx))dx .

The value of I=int_(0)^(pi//2) (1)/(1+cosx)dx is

Evaluate : (i) int_(0)^(pi//2)(cosx)/((cos\ (x)/(2)+sin\ (x)/(2)))dx (ii) int_(0)^(pi//2)(cosx)/((1+cosx+sinx))dx