Home
Class 12
MATHS
The value of the definite integral int0^...

The value of the definite integral `int_0^1(1/(x^2+2xcosalpha+1))dx` for `0 < alpha < pi` is equal

A

`sin alpha`

B

`tan^(-1)(sin alpha)`

C

`alpha sin alpha`

D

`(alpha)/2(sin alpha)^(-1)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise CRITICAL THINKING|115 Videos
  • CONTINUITY

    TARGET PUBLICATION|Exercise Evaluation Test|10 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos

Similar Questions

Explore conceptually related problems

The value of the definite integral int_(0)^(1)(1+e^(-x^(2))) dx is

The value of the integral int_0^1 x(1-x)^n dx=

The value of the integral int_(0)^(1)(dx)/(x^(2)+2xcosalpha+1) , where 0 lt alpha lt (pi)/(2) , is equal to :

Find the Definite Integrals : int_0^2 1/x dx

If f(0)=1,f(2)=3,f'(2)=5 ,then the value of the definite integral int_(0)^(1)xf''(2x)dx is

The value of the integral int_(0)^(2)|x^(2)-1|dx is

Find the Definite Integrals : int_0^2 x^2 dx

Evaluate the definite integrals int_(0)^(1)xe^(x^(3))dx

Evaluate the definite integrals int_(0)^(1)(dx)/(1-x^(2))