Home
Class 12
MATHS
int(0)^(pi//4)(sqrt(tanx)+sqrt(cotx))dx ...

`int_(0)^(pi//4)(sqrt(tanx)+sqrt(cotx))dx` equals

A

`sqrt(2)pi`

B

`(pi)/2`

C

`(pi)/(sqrt(2))`

D

`2pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{4}} \left( \sqrt{\tan x} + \sqrt{\cot x} \right) dx \), we can follow these steps: ### Step 1: Rewrite the integral We start by rewriting the integral in terms of sine and cosine: \[ I = \int_{0}^{\frac{\pi}{4}} \left( \sqrt{\frac{\sin x}{\cos x}} + \sqrt{\frac{\cos x}{\sin x}} \right) dx \] ### Step 2: Simplify the expression This can be simplified as: \[ I = \int_{0}^{\frac{\pi}{4}} \left( \frac{\sqrt{\sin x}}{\sqrt{\cos x}} + \frac{\sqrt{\cos x}}{\sqrt{\sin x}} \right) dx \] Let’s denote the two terms separately: \[ I = \int_{0}^{\frac{\pi}{4}} \frac{\sqrt{\sin x}}{\sqrt{\cos x}} dx + \int_{0}^{\frac{\pi}{4}} \frac{\sqrt{\cos x}}{\sqrt{\sin x}} dx \] ### Step 3: Change of variable Now, we can make a substitution for the second integral. Let \( u = \frac{\pi}{4} - x \). Then, \( du = -dx \) and when \( x = 0 \), \( u = \frac{\pi}{4} \) and when \( x = \frac{\pi}{4} \), \( u = 0 \). Thus, we have: \[ \int_{0}^{\frac{\pi}{4}} \frac{\sqrt{\cos x}}{\sqrt{\sin x}} dx = \int_{\frac{\pi}{4}}^{0} \frac{\sqrt{\sin u}}{\sqrt{\cos u}} (-du) = \int_{0}^{\frac{\pi}{4}} \frac{\sqrt{\sin u}}{\sqrt{\cos u}} du \] ### Step 4: Combine the integrals Now, we can combine the two integrals: \[ I = \int_{0}^{\frac{\pi}{4}} \frac{\sqrt{\sin x}}{\sqrt{\cos x}} dx + \int_{0}^{\frac{\pi}{4}} \frac{\sqrt{\sin x}}{\sqrt{\cos x}} dx = 2 \int_{0}^{\frac{\pi}{4}} \frac{\sqrt{\sin x}}{\sqrt{\cos x}} dx \] ### Step 5: Evaluate the integral Now, we can evaluate: \[ I = 2 \int_{0}^{\frac{\pi}{4}} \sqrt{\tan x} dx \] ### Step 6: Use a known integral The integral \( \int \sqrt{\tan x} \, dx \) can be evaluated using known results or numerical methods. However, we can also use symmetry properties or known integral tables to find that: \[ \int_{0}^{\frac{\pi}{4}} \sqrt{\tan x} \, dx = \frac{\pi}{4 \sqrt{2}} \] Thus, \[ I = 2 \cdot \frac{\pi}{4 \sqrt{2}} = \frac{\pi}{2 \sqrt{2}} \] ### Final Result Therefore, the value of the integral is: \[ \boxed{\frac{\pi}{2 \sqrt{2}}} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise CRITICAL THINKING|115 Videos
  • CONTINUITY

    TARGET PUBLICATION|Exercise Evaluation Test|10 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2)(sqrt(tanx)+sqrt(cotx))\ dx

Evaluate the following integral: int_0^(pi//4)(sqrt(t a n x)+sqrt(cotx))dx

int _(0)^(pi//4) [ sqrt(tan x)+ sqrt(cot x)] dx is equal to

int(sqrt(tanx)+sqrt(cotx))dx is equal to

If int_(0)^(pi//4)[sqrt(tanx)+sqrt(cotx)]dx=(pi)/(sqrtm), then the value of m is equal to

Prove that: int_(0)^((pi)/(4))(sqrt(tan x)+sqrt(cot x)dx=sqrt(2)*(pi)/(2)

int_(0)^((pi)/(4))sqrt(tan x)dx

The value of the integral int_(0)^((pi)/4)(sqrt(tanx))/(sinx cos x) dx equals

TARGET PUBLICATION-DEFINITE INTEGRALS-COMPETITIVE THINKING
  1. Evaluate : (i) int(0)^(pi//2)(cosx)/((cos.(x)/(2)+sin.(x)/(2)))dx (ii)...

    Text Solution

    |

  2. The value of the definite integral int0^1(1/(x^2+2xcosalpha+1))dx for ...

    Text Solution

    |

  3. int(0)^(pi//4)(sqrt(tanx)+sqrt(cotx))dx equals

    Text Solution

    |

  4. If int(log2)^(a)(e^(x))/(sqrt(e^(x)-1))dx=2 then a=

    Text Solution

    |

  5. If int(log" "2)^(x)(du)/((e^(u)-1)^(1//2))=(pi)/(6), then e^(x) is equ...

    Text Solution

    |

  6. T h ev a l u eof(pi^2)/(1n3)int(7/6)^(5/6)sec(pix)dxi s

    Text Solution

    |

  7. int0^1 sin(2tan^(-)sqrt((1+x)/(1-x))) dx

    Text Solution

    |

  8. int(0)^(pi//4)x sec^(2)x " " dx =

    Text Solution

    |

  9. int(0)^(pi//2)e^(x)sinx dx=

    Text Solution

    |

  10. Evaluate : oversetbundersetaint(logx)/(x) dx .

    Text Solution

    |

  11. int(0)^(1) x tan^(-1) x " "dx =

    Text Solution

    |

  12. int(0)^(1//sqrt(2))(sin^(-1)x)/((1-x^(2))^(3//2))dx=?

    Text Solution

    |

  13. Evaluate int(0)^(1//2)(xsin^(-1)x)/(sqrt(1-x^(2)))dx.

    Text Solution

    |

  14. The value of int(pi//4)^(3pi//4)(x)/(1+sinx) dx .. . . . .

    Text Solution

    |

  15. If f(y)=e^y,g(y)=y,y>0, and F(t)=int0^t f(t-y)g(y) dy, then

    Text Solution

    |

  16. int(0)^(2x)d^(x/2).sin(x/2+(pi)/4)dx=

    Text Solution

    |

  17. I10=int0^(pi/2)x^(10)sinx dx then I10+90I8 is (A) 10(pi/2)^6 (B) 10(p...

    Text Solution

    |

  18. If int0^1 x log(1+x/2) \ dx=a+b log\ 2/3, then a and b are

    Text Solution

    |

  19. If I(m,n)=int0^1 t^m(1+t)^n.dt, then the expression for I(m,n) in term...

    Text Solution

    |

  20. The value of ((5050)int0^1(1-x^50)^100 dx)/(int0^1 (1-x^50)^101 dx) i...

    Text Solution

    |