Home
Class 12
MATHS
If int(log2)^(a)(e^(x))/(sqrt(e^(x)-1))d...

If `int_(log2)^(a)(e^(x))/(sqrt(e^(x)-1))dx=2` then `a=`

A

`0`

B

`2log2`

C

`log5`

D

`log2`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise CRITICAL THINKING|115 Videos
  • CONTINUITY

    TARGET PUBLICATION|Exercise Evaluation Test|10 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos

Similar Questions

Explore conceptually related problems

int(e^(x))/(sqrt(e^(2x)-1))dx=

int(dx)/(sqrt(2e^(x)-1))=

int(dx)/(sqrt(e^(2x)-1))=

If int_(log2)^(x) (1)/(sqrt(e^(x)-1))dx=(pi)/(6) then x is equal to

int(e^(2x))/(sqrt(1-e^(2x)))dx

int_(0)^(log 2)(e^(x))/(1+e^(x))dx=

int(dx)/(sqrt(1-e^(2x)))=?

If int_(0)^(1)(e^(x)dx)/(sqrt(1-x^(2)))=A then int_(0)^( pi)(e^(|sin x|)+e^(|cos x|))dx=

Evaluate int(e^(x))/(sqrt(1-e^(2x)))dx

int_(1)^(e^(2))(ln x)/(sqrt(x))dx=