Home
Class 12
MATHS
The value of int(1)^(3)(dx)/(x(1+x^(2)))...

The value of `int_(1)^(3)(dx)/(x(1+x^(2)))` is

A

`1/2log(9/5)`

B

`1/2 log(5/9)`

C

`1/2 log(4/9)`

D

`1/2log(9/4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{1}^{3} \frac{dx}{x(1+x^2)} \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int_{1}^{3} \frac{dx}{x(1+x^2)} \] ### Step 2: Simplify the Integrand We can simplify the integrand by using partial fraction decomposition. We want to express: \[ \frac{1}{x(1+x^2)} = \frac{A}{x} + \frac{Bx + C}{1+x^2} \] Multiplying through by the denominator \(x(1+x^2)\) gives: \[ 1 = A(1+x^2) + (Bx + C)x \] Expanding this, we have: \[ 1 = A + Ax^2 + Bx^2 + Cx \] Combining like terms, we get: \[ 1 = (A + B)x^2 + Cx + A \] From this, we can equate coefficients: 1. \(A = 1\) 2. \(B + A = 0 \Rightarrow B = -1\) 3. \(C = 0\) Thus, we can rewrite our integrand as: \[ \frac{1}{x(1+x^2)} = \frac{1}{x} - \frac{1}{1+x^2} \] ### Step 3: Rewrite the Integral Now we can rewrite the integral \(I\): \[ I = \int_{1}^{3} \left( \frac{1}{x} - \frac{1}{1+x^2} \right) dx \] ### Step 4: Split the Integral We can split the integral into two parts: \[ I = \int_{1}^{3} \frac{1}{x} \, dx - \int_{1}^{3} \frac{1}{1+x^2} \, dx \] ### Step 5: Evaluate the First Integral The first integral is: \[ \int \frac{1}{x} \, dx = \ln|x| \] Thus, \[ \int_{1}^{3} \frac{1}{x} \, dx = \ln(3) - \ln(1) = \ln(3) \] ### Step 6: Evaluate the Second Integral The second integral is: \[ \int \frac{1}{1+x^2} \, dx = \tan^{-1}(x) \] Thus, \[ \int_{1}^{3} \frac{1}{1+x^2} \, dx = \tan^{-1}(3) - \tan^{-1}(1) = \tan^{-1}(3) - \frac{\pi}{4} \] ### Step 7: Combine the Results Now we can combine the results from both integrals: \[ I = \ln(3) - \left( \tan^{-1}(3) - \frac{\pi}{4} \right) \] This simplifies to: \[ I = \ln(3) + \frac{\pi}{4} - \tan^{-1}(3) \] ### Final Answer Thus, the value of the integral is: \[ I = \ln(3) + \frac{\pi}{4} - \tan^{-1}(3) \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise CRITICAL THINKING|115 Videos
  • CONTINUITY

    TARGET PUBLICATION|Exercise Evaluation Test|10 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos

Similar Questions

Explore conceptually related problems

The value of int_(1)^(2) (dx)/(x(1+x^(4)) is

The value of int_(2)^(3)(x+1)/(x^(2)(x-1))dx is

The value of int_(0)^(1)(x^(2))/(1+x^(2))dx is

int_(1)^(3)(2x+1)dx

The value of int_(0)^(2)|1-x|dx

The value of int_(0)^(1)4x^(3){(d^(2))/(dx^(2))(1-x^(2))^(5)}dx is

The value of int_(-1)^(1)x|x|dx is