Home
Class 12
MATHS
If I(1)=overset(e^(2))underset(e )int(dx...

If `I_(1)=overset(e^(2))underset(e )int(dx)/(logx)"and "I_(2)=overset(2)underset(1)int(e^(x))/(x)dx`,then

A

`I_(1)=I_(2)`

B

`I_(1)gtI_(2)`

C

`I_(1)ltI_(2)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise CRITICAL THINKING|115 Videos
  • CONTINUITY

    TARGET PUBLICATION|Exercise Evaluation Test|10 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos

Similar Questions

Explore conceptually related problems

If I_(1)=int_(e )^(e^(2)) (dx)/(logx)"and "I_(2)=int_(1)^(2)(e^(x))/(x)dx ,then

I=int(e^x)/(e^(x)-1)dx

int(e^(2x))/(1+e^(2x))dx=

underset(1)overset(e)int (e^(x))/(x) (1 + x log x)dx

I=int(e^(2x)-1)/(e^(2x))dx

int_(0)^(1)(e^(x))/(1+e^(2x))dx

If I_(1)=int_(e)^(e^(2))(dx)/(ln x) and I_(2)=int_(1)^(2)(e^(x))/(x)dx

int(e^(2x)+1)/(e^(2x)-1)dx=