Home
Class 12
MATHS
The value of int(0)^(1)x|x-1/2|dx is...

The value of `int_(0)^(1)x|x-1/2|dx` is

A

`1/3`

B

`1/4`

C

`1/8`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{1} x |x - \frac{1}{2}| \, dx \), we first need to analyze the expression \( |x - \frac{1}{2}| \) within the limits of integration. ### Step 1: Determine the behavior of \( |x - \frac{1}{2}| \) The expression \( |x - \frac{1}{2}| \) can be broken down based on the value of \( x \): - For \( x < \frac{1}{2} \), \( |x - \frac{1}{2}| = \frac{1}{2} - x \) - For \( x \geq \frac{1}{2} \), \( |x - \frac{1}{2}| = x - \frac{1}{2} \) Since our integral runs from 0 to 1, we can split the integral at \( x = \frac{1}{2} \): \[ \int_{0}^{1} x |x - \frac{1}{2}| \, dx = \int_{0}^{\frac{1}{2}} x \left( \frac{1}{2} - x \right) \, dx + \int_{\frac{1}{2}}^{1} x \left( x - \frac{1}{2} \right) \, dx \] ### Step 2: Evaluate the first integral \( \int_{0}^{\frac{1}{2}} x \left( \frac{1}{2} - x \right) \, dx \) We can simplify the first integral: \[ \int_{0}^{\frac{1}{2}} x \left( \frac{1}{2} - x \right) \, dx = \int_{0}^{\frac{1}{2}} \left( \frac{1}{2}x - x^2 \right) \, dx \] Now, we can integrate term by term: \[ = \left[ \frac{1}{4}x^2 - \frac{1}{3}x^3 \right]_{0}^{\frac{1}{2}} \] Calculating the limits: \[ = \left( \frac{1}{4} \cdot \left( \frac{1}{2} \right)^2 - \frac{1}{3} \cdot \left( \frac{1}{2} \right)^3 \right) - \left( 0 - 0 \right) \] \[ = \left( \frac{1}{4} \cdot \frac{1}{4} - \frac{1}{3} \cdot \frac{1}{8} \right) \] \[ = \frac{1}{16} - \frac{1}{24} \] Finding a common denominator (48): \[ = \frac{3}{48} - \frac{2}{48} = \frac{1}{48} \] ### Step 3: Evaluate the second integral \( \int_{\frac{1}{2}}^{1} x \left( x - \frac{1}{2} \right) \, dx \) Now, we evaluate the second integral: \[ \int_{\frac{1}{2}}^{1} x \left( x - \frac{1}{2} \right) \, dx = \int_{\frac{1}{2}}^{1} \left( x^2 - \frac{1}{2}x \right) \, dx \] Integrating term by term: \[ = \left[ \frac{1}{3}x^3 - \frac{1}{4}x^2 \right]_{\frac{1}{2}}^{1} \] Calculating the limits: \[ = \left( \frac{1}{3}(1)^3 - \frac{1}{4}(1)^2 \right) - \left( \frac{1}{3}\left( \frac{1}{2} \right)^3 - \frac{1}{4}\left( \frac{1}{2} \right)^2 \right) \] \[ = \left( \frac{1}{3} - \frac{1}{4} \right) - \left( \frac{1}{3} \cdot \frac{1}{8} - \frac{1}{4} \cdot \frac{1}{4} \right) \] \[ = \left( \frac{4}{12} - \frac{3}{12} \right) - \left( \frac{1}{24} - \frac{1}{16} \right) \] Finding a common denominator (48): \[ = \frac{1}{12} - \left( \frac{2}{48} - \frac{3}{48} \right) = \frac{1}{12} + \frac{1}{48} \] Finding a common denominator (48): \[ = \frac{4}{48} + \frac{1}{48} = \frac{5}{48} \] ### Step 4: Combine the results Now we combine both integrals: \[ \int_{0}^{1} x |x - \frac{1}{2}| \, dx = \frac{1}{48} + \frac{5}{48} = \frac{6}{48} = \frac{1}{8} \] ### Final Answer Thus, the value of the integral \( \int_{0}^{1} x |x - \frac{1}{2}| \, dx \) is: \[ \boxed{\frac{1}{8}} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise CRITICAL THINKING|115 Videos
  • CONTINUITY

    TARGET PUBLICATION|Exercise Evaluation Test|10 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^(4)|x-1|dx is

The value of int_(0)^(2)|1-x|dx

The value of int_(-1)^(1)x|x|dx is

The value of int_(-1)^(1) x|x|dx , is

The value of int_(0)^(1)x^(2)e^(x)dx is equal to

The value of l = int_(0)^(1) | x- 1/2| dx is

The value of int_(0)^(1)e^(x^(2)-x)dx is (a) 1(c)>e^(-(1)/(4))(d)

TARGET PUBLICATION-DEFINITE INTEGRALS-COMPETITIVE THINKING
  1. int(0)^(1)|3x-1|dx=

    Text Solution

    |

  2. int-2^2 |1-x^2|dx= (A) 4 (B) 2 (C) -2 (D) 0

    Text Solution

    |

  3. The value of int(0)^(1)x|x-1/2|dx is

    Text Solution

    |

  4. int(0)^(100pi)|cosx|dx=…………………………..

    Text Solution

    |

  5. int(0)^(pi//2) abs(sinx-cosx) dx=

    Text Solution

    |

  6. The integral int(0)^(pi)sqrt(1+4"sin"^2(x)/(2)-4"sin"(x)/(2)) dx is e...

    Text Solution

    |

  7. If I=int(1/ e)^e|logx|(dx)/(x^2) ,then I equals (A) 2 (B) 2...

    Text Solution

    |

  8. int(0) ^(3) [x] dx= where [x] is greatest integer function

    Text Solution

    |

  9. Let f(x) = x-[x], for every real number x, where [x] is integral part ...

    Text Solution

    |

  10. The integral int0^(1. 5)[x^2]dx ,w h e r e[dot] denotoes the greatest ...

    Text Solution

    |

  11. The value of int0^9[sqrt(x)+2]dx, where [.] is the greatest integer fu...

    Text Solution

    |

  12. If for all real numbers y ,[y] is the greatest integer less than or eq...

    Text Solution

    |

  13. int(0)^((pi)/2)(x-[cosx])dx= (where [t]= greatest integer less or eq...

    Text Solution

    |

  14. The value of int(1)^(a)[x]f'(x)dx, where agt1, and [x] denotes the gre...

    Text Solution

    |

  15. If [x] denotes the greatest integer less than or equal to x then the v...

    Text Solution

    |

  16. int- 2^2[x]dx

    Text Solution

    |

  17. If [x] dentoes the greatest integer less than or equal to x, then the ...

    Text Solution

    |

  18. int(0)^(11)((11-x)^(2))/(x^(2)+(11-x)^(2))dx=

    Text Solution

    |

  19. int0^(pi/2) sqrt(sinx)/(sqrt(sinx)+sqrt(cosx))dx

    Text Solution

    |

  20. int(0)^((pi)/2)(sin^(1000)x dx)/(sin^(1000)x+cos^(1000)x) is equal to

    Text Solution

    |