Home
Class 12
MATHS
int(0)^((pi)/2)(x-[cosx])dx= (where [t...

`int_(0)^((pi)/2)(x-[cosx])dx=`
(where `[t]=` greatest integer less or equal to `t`)

A

`(pi)/4`

B

`(pi^(2))/8-(pi)/8`

C

`(pi^(2))/8-1`

D

`(pi^(2))/8`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} \left( x - [\cos x] \right) dx \), where \([t]\) denotes the greatest integer less than or equal to \( t \), we will break down the problem step by step. ### Step 1: Understand the function \([\cos x]\) The function \(\cos x\) varies between 1 and 0 for \(x\) in the interval \([0, \frac{\pi}{2}]\). Therefore, we can analyze the values of \([\cos x]\): - For \(x = 0\), \(\cos(0) = 1\) so \([\cos(0)] = 1\). - For \(x = \frac{\pi}{2}\), \(\cos\left(\frac{\pi}{2}\right) = 0\) so \([\cos\left(\frac{\pi}{2}\right)] = 0\). Since \(\cos x\) decreases from 1 to 0 in the interval \([0, \frac{\pi}{2}]\), we can conclude: - For \(0 \leq x < \frac{\pi}{3}\), \(\cos x\) is greater than or equal to \(\frac{1}{2}\) and thus \([\cos x] = 0\). - For \(\frac{\pi}{3} \leq x < \frac{\pi}{2}\), \(\cos x\) is less than \(\frac{1}{2}\) and thus \([\cos x] = 0\). ### Step 2: Rewrite the integral Given that \([\cos x] = 0\) for all \(x\) in the interval \([0, \frac{\pi}{2}]\), we can simplify the integral: \[ I = \int_{0}^{\frac{\pi}{2}} \left( x - 0 \right) dx = \int_{0}^{\frac{\pi}{2}} x \, dx \] ### Step 3: Calculate the integral Now we compute the integral: \[ I = \int_{0}^{\frac{\pi}{2}} x \, dx \] Using the formula for the integral of \(x\): \[ \int x \, dx = \frac{x^2}{2} + C \] We evaluate it from 0 to \(\frac{\pi}{2}\): \[ I = \left[ \frac{x^2}{2} \right]_{0}^{\frac{\pi}{2}} = \frac{\left(\frac{\pi}{2}\right)^2}{2} - \frac{0^2}{2} = \frac{\frac{\pi^2}{4}}{2} = \frac{\pi^2}{8} \] ### Final Answer Thus, the value of the integral is: \[ I = \frac{\pi^2}{8} \] ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise CRITICAL THINKING|115 Videos
  • CONTINUITY

    TARGET PUBLICATION|Exercise Evaluation Test|10 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(15/2)[x-1]dx= where [x] denotes the greatest integer less than or equal to x

The value of int_(0)^(2)x^([x^(2)+1])(dx), where [x] is the greatest integer less than or equal to x is

The value of int_(0)^(2) x^([x^(2) +1]) dx , where [x] is the greatest integer less than or equal to x is

The value of int_(-1)^(2)|[x]-{x}dx, where [x] isthe greatest integer less then or equal to x and {x} is theTrectional part of a is

The integral I= int_(0)^(2) [x^2] dx ([x] denotes the greatest integer less than or equal to x) is equal to:

The value of int_(1)^(3) (|x-2|+[x])dx is ([x] stands for greatest integer less than or equal to x)

int_(0)^(pi)[cotx]dx, where [.] denotes the greatest integer function, is equal to

int_(0)^(pi)[cos x] dx, [ ] denotes the greatest integer function , is equal to

int_(0)^(oo)[2e^(-x)]dx , where [.] deontes greatest integer function, is equal to

TARGET PUBLICATION-DEFINITE INTEGRALS-COMPETITIVE THINKING
  1. The value of int0^9[sqrt(x)+2]dx, where [.] is the greatest integer fu...

    Text Solution

    |

  2. If for all real numbers y ,[y] is the greatest integer less than or eq...

    Text Solution

    |

  3. int(0)^((pi)/2)(x-[cosx])dx= (where [t]= greatest integer less or eq...

    Text Solution

    |

  4. The value of int(1)^(a)[x]f'(x)dx, where agt1, and [x] denotes the gre...

    Text Solution

    |

  5. If [x] denotes the greatest integer less than or equal to x then the v...

    Text Solution

    |

  6. int- 2^2[x]dx

    Text Solution

    |

  7. If [x] dentoes the greatest integer less than or equal to x, then the ...

    Text Solution

    |

  8. int(0)^(11)((11-x)^(2))/(x^(2)+(11-x)^(2))dx=

    Text Solution

    |

  9. int0^(pi/2) sqrt(sinx)/(sqrt(sinx)+sqrt(cosx))dx

    Text Solution

    |

  10. int(0)^((pi)/2)(sin^(1000)x dx)/(sin^(1000)x+cos^(1000)x) is equal to

    Text Solution

    |

  11. int(0)^((pi)/2)(tan^(7)x)/(cot^(7)x+tan^(7)x)dx is equal to

    Text Solution

    |

  12. The value of the integral int(0)^(pi//2)(sqrt(cotx))/(sqrt(cotx)+sqrt(...

    Text Solution

    |

  13. int(0) ^( pi//2) (root(n)(secx))/(root(n) (secx )+ root (n) ("cosec "x...

    Text Solution

    |

  14. Evaluate the following : int(0)^(pi//2)(1)/(1+sqrt(tanx))dx

    Text Solution

    |

  15. int(0)^((pi)/2)(dx)/(1+(tanx)^(sqrt(2018)))=

    Text Solution

    |

  16. The value of int (0)^(pi//2) (2^(sinx))/(2^(sinx)+2^(cosx))dx is

    Text Solution

    |

  17. int(0)^((pi)/2)(2008^(sinx))/(2008^(sinx)+2008^(cosx))dx=

    Text Solution

    |

  18. int(0)^((pi)/2)(cos^(3)x)/(sinx+cosx)dx

    Text Solution

    |

  19. int(0)^(pi//2) log (cotx ) dx=

    Text Solution

    |

  20. If int(0)^((pi)/2)log(cosx)dx=-(pi)/2log2, then int(0)^((pi)/2)log(cos...

    Text Solution

    |