Home
Class 12
MATHS
int(0)^(11)((11-x)^(2))/(x^(2)+(11-x)^(2...

`int_(0)^(11)((11-x)^(2))/(x^(2)+(11-x)^(2))dx=`

A

2

B

`11/2`

C

`4`

D

`1/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{11} \frac{(11-x)^{2}}{x^{2} + (11-x)^{2}} \, dx, \] we can use a property of definite integrals. The property states that if we have an integral from \(a\) to \(b\) of a function \(f(x)\), we can express it as: \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \, dx. \] In this case, \(a = 0\) and \(b = 11\). Therefore, we can rewrite the integral as follows: 1. **Substituting \(x\) with \(11 - x\)**: \[ I = \int_{0}^{11} \frac{(11 - (11 - x))^{2}}{(11 - x)^{2} + (11 - (11 - x))^{2}} \, dx. \] Simplifying the expression inside the integral gives: \[ I = \int_{0}^{11} \frac{x^{2}}{(11-x)^{2} + x^{2}} \, dx. \] 2. **Now we have two expressions for \(I\)**: \[ I = \int_{0}^{11} \frac{(11-x)^{2}}{x^{2} + (11-x)^{2}} \, dx, \] \[ I = \int_{0}^{11} \frac{x^{2}}{(11-x)^{2} + x^{2}} \, dx. \] 3. **Adding these two integrals**: \[ 2I = \int_{0}^{11} \left( \frac{(11-x)^{2}}{x^{2} + (11-x)^{2}} + \frac{x^{2}}{(11-x)^{2} + x^{2}} \right) \, dx. \] Since the denominators are the same, we can combine the fractions: \[ 2I = \int_{0}^{11} \frac{(11-x)^{2} + x^{2}}{x^{2} + (11-x)^{2}} \, dx. \] The numerator simplifies to: \[ (11-x)^{2} + x^{2} = 121 - 22x + 2x^{2}. \] 4. **The integral simplifies to**: \[ 2I = \int_{0}^{11} 1 \, dx = 11. \] 5. **Solving for \(I\)**: \[ 2I = 11 \implies I = \frac{11}{2}. \] Thus, the value of the integral is \[ \boxed{\frac{11}{2}}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise CRITICAL THINKING|115 Videos
  • CONTINUITY

    TARGET PUBLICATION|Exercise Evaluation Test|10 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos

Similar Questions

Explore conceptually related problems

int_(4)^(7)((11-x)^(2))/(x^(2)+(11-x)^(2))dx=

Evaluate: int_(3)^(8) ((11-x)^(2))/(x^(2)+(11-x)^(2))dx

Evaluate the following : int_(4)^(7)((11-x)^(3))/(x^(3)+(11-x)^(3))dx

int x^(11)dx

Given I=int_(0)^(2)(sqrt((x^(4))/(4)-2x^(3)+(11)/(2)x^(2)-6x+4))dx then the value of I lie in the interval

int((1)/(1-x^(2))+(1)/(1+x^(2)))dx on (-1,1)

int(3x^(13)+2x^(11))/((2x^(4)+3x^(2)+1)^(4))dx

If int_(0)^(11)(11^(x))/(11^([x]))dx=(k)/(log11) then value of k is (where [^(*)] denotes greatest integer function )