Home
Class 12
MATHS
int(0)^((pi)/2)(tan^(7)x)/(cot^(7)x+tan^...

`int_(0)^((pi)/2)(tan^(7)x)/(cot^(7)x+tan^(7)x)dx` is equal to

A

`(pi)/2`

B

`(pi)/4`

C

`(pi)/6`

D

`(pi)/3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} \frac{\tan^7 x}{\cot^7 x + \tan^7 x} \, dx \), we can use a property of definite integrals. Here’s a step-by-step solution: ### Step 1: Set up the integral Let \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\tan^7 x}{\cot^7 x + \tan^7 x} \, dx \] ### Step 2: Use the property of definite integrals We can use the substitution \( x = \frac{\pi}{2} - t \). Then, \( dx = -dt \) and the limits change as follows: - When \( x = 0 \), \( t = \frac{\pi}{2} \) - When \( x = \frac{\pi}{2} \), \( t = 0 \) Thus, we have: \[ I = \int_{\frac{\pi}{2}}^{0} \frac{\tan^7\left(\frac{\pi}{2} - t\right)}{\cot^7\left(\frac{\pi}{2} - t\right) + \tan^7\left(\frac{\pi}{2} - t\right)} (-dt) \] This simplifies to: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\cot^7 t}{\tan^7 t + \cot^7 t} \, dt \] ### Step 3: Combine the two integrals Now we have: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\tan^7 x}{\cot^7 x + \tan^7 x} \, dx \] and \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\cot^7 x}{\tan^7 x + \cot^7 x} \, dx \] Adding these two expressions for \( I \): \[ 2I = \int_{0}^{\frac{\pi}{2}} \left( \frac{\tan^7 x}{\cot^7 x + \tan^7 x} + \frac{\cot^7 x}{\tan^7 x + \cot^7 x} \right) dx \] ### Step 4: Simplify the integrand The sum simplifies to: \[ 2I = \int_{0}^{\frac{\pi}{2}} \frac{\tan^7 x + \cot^7 x}{\tan^7 x + \cot^7 x} \, dx = \int_{0}^{\frac{\pi}{2}} 1 \, dx \] ### Step 5: Evaluate the integral Now we can evaluate the integral: \[ 2I = \int_{0}^{\frac{\pi}{2}} 1 \, dx = \left[ x \right]_{0}^{\frac{\pi}{2}} = \frac{\pi}{2} - 0 = \frac{\pi}{2} \] ### Step 6: Solve for \( I \) Thus, we have: \[ 2I = \frac{\pi}{2} \implies I = \frac{\pi}{4} \] ### Final Answer The value of the integral is: \[ \boxed{\frac{\pi}{4}} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise CRITICAL THINKING|115 Videos
  • CONTINUITY

    TARGET PUBLICATION|Exercise Evaluation Test|10 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos

Similar Questions

Explore conceptually related problems

int(cot x-tan x)dx is equal to

The value of int_(-pi//2)^(pi//2)(x^(2)+x cosx+tan^(5)x+1)dx is equal to

int_(0)^(pi//4) (sec^(2)x)/((1+tan x)(2+tan x))dx is equal to

int_(0)^((pi)/(2))(1)/(cot x+tan x)dx

int(tan x+cot x)dx is equal to

The value of definite integral I=int_(ln((sqrt3)/(2)))^(ln((2)/(sqrt3)))ln.((2-tan^(7)x)/(2+tan^(7)x))dx is equal to

int_(0)^(pi//4) tan x dx

The value of int_(0)^((pi)/(2))(ln|tan x+cot x|)dx is equal to