Home
Class 12
MATHS
int(0)^((pi)/2)(cos^(3)x)/(sinx+cosx)dx...

`int_(0)^((pi)/2)(cos^(3)x)/(sinx+cosx)dx`

A

`(pi-1)/2`

B

`(pi-1)/4`

C

`(1+pi)/4`

D

`(pi-3)/4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} \frac{\cos^3 x}{\sin x + \cos x} \, dx \), we can use the property of definite integrals. ### Step-by-Step Solution: 1. **Define the Integral**: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\cos^3 x}{\sin x + \cos x} \, dx \] 2. **Use the Property of Definite Integrals**: We can use the substitution \( x = \frac{\pi}{2} - t \). Then, \( dx = -dt \) and the limits change as follows: - When \( x = 0 \), \( t = \frac{\pi}{2} \) - When \( x = \frac{\pi}{2} \), \( t = 0 \) Thus, we have: \[ I = \int_{\frac{\pi}{2}}^{0} \frac{\cos^3\left(\frac{\pi}{2} - t\right)}{\sin\left(\frac{\pi}{2} - t\right) + \cos\left(\frac{\pi}{2} - t\right)} (-dt) \] 3. **Simplify the Integral**: Using the identities \( \cos\left(\frac{\pi}{2} - t\right) = \sin t \) and \( \sin\left(\frac{\pi}{2} - t\right) = \cos t \), we get: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sin^3 t}{\cos t + \sin t} \, dt \] 4. **Combine the Two Integrals**: Now we have two expressions for \( I \): \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\cos^3 x}{\sin x + \cos x} \, dx \] \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sin^3 x}{\sin x + \cos x} \, dx \] Adding these two integrals gives: \[ 2I = \int_{0}^{\frac{\pi}{2}} \frac{\cos^3 x + \sin^3 x}{\sin x + \cos x} \, dx \] 5. **Use the Identity for Sums of Cubes**: Recall the identity \( a^3 + b^3 = (a + b)(a^2 - ab + b^2) \): \[ \cos^3 x + \sin^3 x = (\sin x + \cos x)(\sin^2 x - \sin x \cos x + \cos^2 x) \] Since \( \sin^2 x + \cos^2 x = 1 \): \[ \cos^3 x + \sin^3 x = (\sin x + \cos x)(1 - \sin x \cos x) \] 6. **Substitute Back into the Integral**: Substitute this back into the integral: \[ 2I = \int_{0}^{\frac{\pi}{2}} \frac{(\sin x + \cos x)(1 - \sin x \cos x)}{\sin x + \cos x} \, dx \] This simplifies to: \[ 2I = \int_{0}^{\frac{\pi}{2}} (1 - \sin x \cos x) \, dx \] 7. **Evaluate the Integral**: Split the integral: \[ 2I = \int_{0}^{\frac{\pi}{2}} 1 \, dx - \int_{0}^{\frac{\pi}{2}} \sin x \cos x \, dx \] The first integral evaluates to: \[ \int_{0}^{\frac{\pi}{2}} 1 \, dx = \frac{\pi}{2} \] The second integral can be evaluated using the identity \( \sin x \cos x = \frac{1}{2} \sin(2x) \): \[ \int_{0}^{\frac{\pi}{2}} \sin x \cos x \, dx = \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \sin(2x) \, dx = \frac{1}{2} \left[-\frac{1}{2} \cos(2x)\right]_{0}^{\frac{\pi}{2}} = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4} \] 8. **Combine Results**: Thus, \[ 2I = \frac{\pi}{2} - \frac{1}{4} \] \[ 2I = \frac{2\pi}{4} - \frac{1}{4} = \frac{2\pi - 1}{4} \] Therefore, \[ I = \frac{2\pi - 1}{8} \] ### Final Answer: \[ I = \frac{2\pi - 1}{8} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise CRITICAL THINKING|115 Videos
  • CONTINUITY

    TARGET PUBLICATION|Exercise Evaluation Test|10 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos

Similar Questions

Explore conceptually related problems

Evaluate int_(0)^((pi)/2)(sin3x)/(sinx+cosx) dx .

I_(1)=int_(0)^((pi)/2)(sinx-cosx)/(1+sinxcosx)dx, I_(2)=int_(0)^(2pi)cos^(6)dx , I_(3)=int_(-(pi)/2)^((pi)/2)sin^(3)xdx, I_(4)=int_(0)^(1) In (1/x-1)dx . Then

int_(0)^( pi/2)(cosx)/(1+sinx)dx

int_(0)^(pi//2)(cosx)/((sinx+cosx))dx=(pi)/(4)

Evaluate the following : int_(0)^(pi//2)(sinx)/(sinx+cosx)dx

Evaluate the following : int_(0)^(pi//2)(sinx-cosx)/(1+sinx.cosx)dx

Evaluate int_(0)^(pi//2)(sinx-cosx)/(1+sinx*cosx)dx

int_(0)^( pi/2)(cosx/(2+sinx))dx

int_(0)^(pi//2)(sinx)/((sinx+cosx))dx=?

Evaluate: int_0^(pi/2) cos^2x/(2+sinx+cosx)dx