Home
Class 12
MATHS
If int(0)^((pi)/2)log(cosx)dx=-(pi)/2log...

If `int_(0)^((pi)/2)log(cosx)dx=-(pi)/2log2`, then `int_(0)^((pi)/2)log(cosecx)dx=`

A

`(pi)/2-(pi)/2log2`

B

`-(pi)/2log2`

C

`(pi)/2log2`

D

`(pi)/2+(pi)/2log2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the integral \( I_2 = \int_0^{\frac{\pi}{2}} \log(\csc x) \, dx \) given that \( I_1 = \int_0^{\frac{\pi}{2}} \log(\cos x) \, dx = -\frac{\pi}{2} \log 2 \). ### Step-by-step Solution: 1. **Define the Integrals**: Let \[ I_1 = \int_0^{\frac{\pi}{2}} \log(\cos x) \, dx \] and \[ I_2 = \int_0^{\frac{\pi}{2}} \log(\csc x) \, dx. \] 2. **Use the Identity for Cosecant**: Recall that \[ \csc x = \frac{1}{\sin x}. \] Therefore, we can rewrite \( I_2 \) as: \[ I_2 = \int_0^{\frac{\pi}{2}} \log(\csc x) \, dx = \int_0^{\frac{\pi}{2}} \log\left(\frac{1}{\sin x}\right) \, dx. \] 3. **Simplify the Integral**: Using the property of logarithms, we have: \[ \log\left(\frac{1}{\sin x}\right) = -\log(\sin x). \] Thus, we can express \( I_2 \) as: \[ I_2 = -\int_0^{\frac{\pi}{2}} \log(\sin x) \, dx. \] 4. **Relate \( I_1 \) and \( I_2 \)**: We know from the properties of definite integrals that: \[ \int_0^{\frac{\pi}{2}} \log(\sin x) \, dx = \int_0^{\frac{\pi}{2}} \log(\cos x) \, dx. \] Therefore, we can write: \[ \int_0^{\frac{\pi}{2}} \log(\sin x) \, dx = I_1. \] 5. **Substitute Back**: Now substituting back into the expression for \( I_2 \): \[ I_2 = -I_1. \] 6. **Substitute the Value of \( I_1 \)**: Given that \( I_1 = -\frac{\pi}{2} \log 2 \), we substitute this value into the equation for \( I_2 \): \[ I_2 = -\left(-\frac{\pi}{2} \log 2\right) = \frac{\pi}{2} \log 2. \] ### Final Answer: Thus, the value of \( \int_0^{\frac{\pi}{2}} \log(\csc x) \, dx \) is: \[ \int_0^{\frac{\pi}{2}} \log(\csc x) \, dx = \frac{\pi}{2} \log 2. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise CRITICAL THINKING|115 Videos
  • CONTINUITY

    TARGET PUBLICATION|Exercise Evaluation Test|10 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos

Similar Questions

Explore conceptually related problems

int_(0)^((pi)/(2))log(cos x)dx=

int_(0)^(pi//2)log (sec x) dx=

int_(0)^((pi)/(2))log(sin2x)dx

int_(0)^((pi)/(2))log(sin x)dx

If int_(0)^((pi)/(2))logcosxdx=(pi)/(2)log((1)/(2)) , then int_(0)^((pi)/(2))logsecdx=

If int_(0)^(pi//2) log(cosx) dx=pi/2 log (1/2), then int_(0) ^(pi//2) log (sec x ) dx =

int_(0)^(pi//2) log (cotx ) dx=

int_(0)^(pi)log(1+cosx)dx=-pi(log2)

int_(0)^(pi//2)log(tanx+cotx)dx=pi(log2)

int_(0)^((pi)/(2))log(tan x)*dx