Home
Class 12
MATHS
int(0)^(pi//2) sin 2x log (tan x) dx is ...

` int_(0)^(pi//2) sin 2x log (tan x)` dx is equal to

A

`pi`

B

`(pi)/2`

C

`0`

D

`2pi`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise CRITICAL THINKING|115 Videos
  • CONTINUITY

    TARGET PUBLICATION|Exercise Evaluation Test|10 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos

Similar Questions

Explore conceptually related problems

What is int_(0)^(pi//2) sin 2x ln (cot x) dx equal to ?

int_(0)^(pi//2) sin 2 x (tan x) dx=

int_(0)^(pi//2) sec x log (sec x+tan x) dx is equal to

int_(0)^((pi)/(2))sin2x log tan xdx is equal to

int_(0)^((pi)/(2))sin2x*log(tan x)dx=

int_(0)^(pi//2) log (tan x ) dx=

int_(0)^(pi/2) sin 2x tan^(-1) (sin x) dx

If= int_(0)^(pi//2) sin x . log (sin x ) dx = log ((K)/(e)). Then, the value of K is ….

int_(0)^(pi//2) (2logsin x - log sin 2x) dx=