Home
Class 12
MATHS
int(0)^(pi)(x dx)/(4 cos^(2)x+9sin^(2)x)...

`int_(0)^(pi)(x dx)/(4 cos^(2)x+9sin^(2)x)=`

A

`(pi^(2))/12`

B

`(pi^(2))/4`

C

`(pi^(2))/6`

D

`(pi^(2))/3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{\pi} \frac{x \, dx}{4 \cos^2 x + 9 \sin^2 x}, \] we can use a symmetry property of definite integrals. Let's go through the solution step by step. ### Step 1: Set up the integral We start with the integral: \[ I = \int_{0}^{\pi} \frac{x \, dx}{4 \cos^2 x + 9 \sin^2 x}. \] ### Step 2: Use the property of definite integrals We can use the property of definite integrals that states: \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \, dx. \] In our case, \( a = 0 \) and \( b = \pi \), so we have: \[ I = \int_{0}^{\pi} \frac{\pi - x \, dx}{4 \cos^2(\pi - x) + 9 \sin^2(\pi - x)}. \] ### Step 3: Simplify the integrand Using the identities \( \cos(\pi - x) = -\cos x \) and \( \sin(\pi - x) = \sin x \), we can rewrite the integral: \[ I = \int_{0}^{\pi} \frac{\pi - x \, dx}{4 \cos^2 x + 9 \sin^2 x}. \] ### Step 4: Combine the two integrals Now we have two expressions for \( I \): 1. \( I = \int_{0}^{\pi} \frac{x \, dx}{4 \cos^2 x + 9 \sin^2 x} \) 2. \( I = \int_{0}^{\pi} \frac{\pi - x \, dx}{4 \cos^2 x + 9 \sin^2 x} \) Adding these two equations gives: \[ 2I = \int_{0}^{\pi} \frac{x + (\pi - x) \, dx}{4 \cos^2 x + 9 \sin^2 x} = \int_{0}^{\pi} \frac{\pi \, dx}{4 \cos^2 x + 9 \sin^2 x}. \] ### Step 5: Solve for \( I \) We can now solve for \( I \): \[ 2I = \pi \int_{0}^{\pi} \frac{dx}{4 \cos^2 x + 9 \sin^2 x}. \] Thus, \[ I = \frac{\pi}{2} \int_{0}^{\pi} \frac{dx}{4 \cos^2 x + 9 \sin^2 x}. \] ### Step 6: Evaluate the integral Now, we need to evaluate the integral: \[ \int_{0}^{\pi} \frac{dx}{4 \cos^2 x + 9 \sin^2 x}. \] We can use the substitution \( t = \tan x \), which gives \( dx = \frac{dt}{1 + t^2} \) and changes the limits from \( 0 \) to \( \infty \) as \( x \) goes from \( 0 \) to \( \frac{\pi}{2} \) and back to \( 0 \) to \( \infty \). This transforms our integral into: \[ \int_{0}^{\infty} \frac{1}{4 \frac{1}{1+t^2} + 9 \frac{t^2}{1+t^2}} \cdot \frac{dt}{1+t^2}. \] Simplifying this gives: \[ \int_{0}^{\infty} \frac{dt}{\frac{4 + 9t^2}{1+t^2}} = \int_{0}^{\infty} \frac{(1+t^2) dt}{4 + 9t^2}. \] ### Step 7: Final evaluation This integral can be evaluated using standard techniques (like partial fractions or recognizing it as a standard form). After evaluating, we find: \[ \int_{0}^{\infty} \frac{dt}{4 + 9t^2} = \frac{1}{3} \cdot \frac{\pi}{2}. \] Substituting this back into our expression for \( I \): \[ I = \frac{\pi}{2} \cdot \frac{\pi}{6} = \frac{\pi^2}{12}. \] ### Final Answer Thus, the value of the integral is: \[ \boxed{\frac{\pi^2}{12}}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise CRITICAL THINKING|115 Videos
  • CONTINUITY

    TARGET PUBLICATION|Exercise Evaluation Test|10 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos

Similar Questions

Explore conceptually related problems

int_(0)^((pi)/(2))(1)/(4cos^(2)x+9sin^(2)x)dx=

int_(0)^(pi//2)(dx)/((4+9cos^(2)x))

int_(0)^(pi) x sin x cos^(2)x\ dx

int_0^(pi/2) (dx)/((4+9 cos^(2)x))

int_(0)^(pi) x sin x. cos^(2) x dx

int_(0)^( pi)(sin x)/(1+cos^(2)x)dx =

int_(0)^( pi)x*sin x*cos^(4)x*dx

Prove that : int_(0)^(pi) (x sin x)/(1+cos^(2)x) dx =(pi^(2))/(4)

TARGET PUBLICATION-DEFINITE INTEGRALS-COMPETITIVE THINKING
  1. Let f be a non constant continuous function for all xge0. Let f satisf...

    Text Solution

    |

  2. int(0)^(pi)(xdx)/(1+sinx) is equal to

    Text Solution

    |

  3. int(0)^(pi)(x dx)/(4 cos^(2)x+9sin^(2)x)=

    Text Solution

    |

  4. int0^pi(ntanx)/(secx+cosx)dx

    Text Solution

    |

  5. int0^(pi/2) (xsinxcosx)/(cos^4x+sin^4x) dx=

    Text Solution

    |

  6. int0^1log(1+x)/(1+x^2)dx

    Text Solution

    |

  7. The value of int(8 log(1+x))/(1+x^(2)) dx is

    Text Solution

    |

  8. int(0)^(pi)[cotx]dx, where [.] denotes the greatest integer function, ...

    Text Solution

    |

  9. int2^8 sqrt(10-x)/(sqrtx+sqrt(10-x))dx

    Text Solution

    |

  10. int(2016)^(2017)(sqrt(x))/(sqrt(x)+sqrt(4033-x))dx is equal to

    Text Solution

    |

  11. int(pi//4)^(3pi//4)(dx)/(1+cosx) is equal to

    Text Solution

    |

  12. The integral int2^4(logx^2)/(logx^2+log(36-12 x+x^2)dx is equal to:...

    Text Solution

    |

  13. The value of int(-pi//2)^(pi//2)(1)/(e^(sinx)+1) dx is equal to

    Text Solution

    |

  14. The value of overset(sqrt("In"3))underset(sqrt("In"2))int(xsinx^(2))/(...

    Text Solution

    |

  15. The value of the integral I = int(1//2014)^(2014)(tan^(-1) x)/x dx is

    Text Solution

    |

  16. The value of the definite integral 1/pi int(pi/2)^((5pi)/2) e^(tan^(-...

    Text Solution

    |

  17. If f(x)=f(pi+e-x) and inte^pif(x)dx=2/(e+pi), then inte^pi xf(x)dx is ...

    Text Solution

    |

  18. The value of int(pi//4)^(3pi//4)(phi)/(1+sinphi)d phi is

    Text Solution

    |

  19. Let I(1) =int(a)^(pi-a)xf(sinx)dx,I(2)=int(a)^(pi-a)f(sinx)dx, then I(...

    Text Solution

    |

  20. If f(x)=(e^(2))/(1+e^(x)),I(1)=overset(f(a))underset(f(-a))int xg{x(1-...

    Text Solution

    |