Home
Class 12
MATHS
The value of the integral I = int(1//201...

The value of the integral `I = int_(1//2014)^(2014)(tan^(-1) x)/x dx` is

A

`(pi)/4 log2014`

B

`(pi)/2 log 2014`

C

`pi log 2014`

D

`1/2 log 2014`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{\frac{1}{2014}}^{2014} \frac{\tan^{-1} x}{x} \, dx \), we can use the property of definite integrals and a substitution to simplify the calculation. Here’s a step-by-step breakdown of the solution: ### Step 1: Use the property of definite integrals We can use the property that states: \[ \int_a^b f(x) \, dx = \int_a^b f(a + b - x) \, dx \] In our case, let \( a = \frac{1}{2014} \) and \( b = 2014 \). Thus, we have: \[ I = \int_{\frac{1}{2014}}^{2014} \frac{\tan^{-1} x}{x} \, dx = \int_{\frac{1}{2014}}^{2014} \frac{\tan^{-1} \left( 2014 - x \right)}{2014 - x} \, dx \] ### Step 2: Change of variable Let \( x = \frac{1}{t} \). Then, \( dx = -\frac{1}{t^2} dt \). The limits change as follows: - When \( x = \frac{1}{2014} \), \( t = 2014 \) - When \( x = 2014 \), \( t = \frac{1}{2014} \) Thus, the integral becomes: \[ I = \int_{2014}^{\frac{1}{2014}} \frac{\tan^{-1} \left( \frac{1}{t} \right)}{\frac{1}{t}} \left(-\frac{1}{t^2}\right) dt = \int_{\frac{1}{2014}}^{2014} \frac{\tan^{-1} \left( \frac{1}{t} \right)}{t} dt \] ### Step 3: Use the identity for inverse tangent We know that: \[ \tan^{-1} \left( \frac{1}{t} \right) = \frac{\pi}{2} - \tan^{-1}(t) \] Thus, we can rewrite the integral: \[ I = \int_{\frac{1}{2014}}^{2014} \frac{\frac{\pi}{2} - \tan^{-1}(t)}{t} dt \] ### Step 4: Split the integral Now, we can split the integral into two parts: \[ I = \int_{\frac{1}{2014}}^{2014} \frac{\pi/2}{t} dt - \int_{\frac{1}{2014}}^{2014} \frac{\tan^{-1}(t)}{t} dt \] The first integral can be computed as: \[ \int_{\frac{1}{2014}}^{2014} \frac{\pi/2}{t} dt = \frac{\pi}{2} \left[ \ln t \right]_{\frac{1}{2014}}^{2014} = \frac{\pi}{2} \left( \ln(2014) - \ln\left(\frac{1}{2014}\right) \right) = \frac{\pi}{2} \left( \ln(2014) + \ln(2014) \right) = \pi \ln(2014) \] ### Step 5: Combine the results Now we have: \[ I = \pi \ln(2014) - I \] Adding \( I \) to both sides gives: \[ 2I = \pi \ln(2014) \] Thus, we find: \[ I = \frac{\pi}{2} \ln(2014) \] ### Final Answer The value of the integral is: \[ \boxed{\frac{\pi}{2} \ln(2014)} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise CRITICAL THINKING|115 Videos
  • CONTINUITY

    TARGET PUBLICATION|Exercise Evaluation Test|10 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_0^1 x(1-x)^n dx=

Evaluate the integral I = int_(0)^(2) |1-x| dx

The value of integral I = int_(0)^(pi//4) (tan^(2)x + 2sin^(2)x) dx is:

If f(x)-3cos(tan^(-1)x) , then the value of the integral int_(0)^(1)xf''(x)dx is

The value of the integral int_(-1)^(1) (x-[2x]) dx,is

The value of the integral int_(1//3)^(1)((x-x^(3))^(1//3))/(x^(4))dx is

The value of the integral I=int_(0)^(pi)(x)/(1+tan^(6)x)dx, (x not equal to (pi)/(2) ) is equal to

The value of the integral int_(0)^(1) x(1-x)^(n)dx , is

TARGET PUBLICATION-DEFINITE INTEGRALS-COMPETITIVE THINKING
  1. The value of int(-pi//2)^(pi//2)(1)/(e^(sinx)+1) dx is equal to

    Text Solution

    |

  2. The value of overset(sqrt("In"3))underset(sqrt("In"2))int(xsinx^(2))/(...

    Text Solution

    |

  3. The value of the integral I = int(1//2014)^(2014)(tan^(-1) x)/x dx is

    Text Solution

    |

  4. The value of the definite integral 1/pi int(pi/2)^((5pi)/2) e^(tan^(-...

    Text Solution

    |

  5. If f(x)=f(pi+e-x) and inte^pif(x)dx=2/(e+pi), then inte^pi xf(x)dx is ...

    Text Solution

    |

  6. The value of int(pi//4)^(3pi//4)(phi)/(1+sinphi)d phi is

    Text Solution

    |

  7. Let I(1) =int(a)^(pi-a)xf(sinx)dx,I(2)=int(a)^(pi-a)f(sinx)dx, then I(...

    Text Solution

    |

  8. If f(x)=(e^(2))/(1+e^(x)),I(1)=overset(f(a))underset(f(-a))int xg{x(1-...

    Text Solution

    |

  9. Q. int0^pi(e^(cos^2x)( cos^3(2n+1) x dx, n in I

    Text Solution

    |

  10. int0^pi x f(sin x)dx is equal to

    Text Solution

    |

  11. If I(1)=int(0)^(pi//2)f(sin2x)sin x dx and I(2)=int(0)^(pi//4)f(cos2x)...

    Text Solution

    |

  12. Evaluate: int0^(100pi)sqrt((1-cos2x))dxdot

    Text Solution

    |

  13. int(-1)^(1) sin^(3) x cos^(2) x dx is equal to

    Text Solution

    |

  14. The value of int((pi)/4)/((-pi)/4)sin^(103)x .cos^(101)xdx is

    Text Solution

    |

  15. The value of int- 2^2(xcosx+sinx+1)dx is

    Text Solution

    |

  16. int(4)^(4)log((9-x)/(9+x))dx equals

    Text Solution

    |

  17. Evaluate the following : int(-pi//2)^(pi//2)log((2-sinx)/(2+sinx))d...

    Text Solution

    |

  18. To find the numberical value of overset(2)underset(-2)int (px^(3)+qx+8...

    Text Solution

    |

  19. If f(x)={(e^(cosx)sinx, |x|le2),(2, otherwise):} then int-2^3f(x)dx= (...

    Text Solution

    |

  20. int(-2)^0{x^3+3x^2+3x+3+(x+1)cos(x+1)dxi se q u a lto -4 (b) 0 (c...

    Text Solution

    |