Home
Class 12
MATHS
The value of int(pi//4)^(3pi//4)(phi)/(1...

The value of `int_(pi//4)^(3pi//4)(phi)/(1+sinphi)d phi` is

A

`pi "tan"(pi)/8`

B

`log "tan"(pi)/8`

C

`"tan"(pi)/8`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{\phi}{1 + \sin \phi} \, d\phi, \] we can use the property of definite integrals. The property states that \[ \int_a^b f(x) \, dx = \int_a^b f(a + b - x) \, dx. \] In our case, \( a = \frac{\pi}{4} \) and \( b = \frac{3\pi}{4} \), so \( a + b = \pi \). Thus, we can write: \[ I = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{\phi}{1 + \sin \phi} \, d\phi = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{\pi - \phi}{1 + \sin(\pi - \phi)} \, d\phi. \] Since \( \sin(\pi - \phi) = \sin \phi \), we have: \[ I = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{\pi - \phi}{1 + \sin \phi} \, d\phi. \] Now, we can express this integral as: \[ I = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{\pi}{1 + \sin \phi} \, d\phi - \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{\phi}{1 + \sin \phi} \, d\phi. \] Let’s denote the second integral as \( I \): \[ I = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{\pi}{1 + \sin \phi} \, d\phi - I. \] Adding \( I \) to both sides gives: \[ 2I = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{\pi}{1 + \sin \phi} \, d\phi. \] Thus, we can solve for \( I \): \[ I = \frac{1}{2} \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{\pi}{1 + \sin \phi} \, d\phi. \] Next, we need to evaluate the integral \( \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{1}{1 + \sin \phi} \, d\phi \). To simplify this integral, we can multiply the numerator and denominator by \( 1 - \sin \phi \): \[ \int \frac{1 - \sin \phi}{(1 + \sin \phi)(1 - \sin \phi)} \, d\phi = \int \frac{1 - \sin \phi}{\cos^2 \phi} \, d\phi. \] This gives us: \[ \int \sec^2 \phi \, d\phi - \int \frac{\sin \phi}{\cos^2 \phi} \, d\phi = \tan \phi + \frac{1}{\cos \phi} + C. \] Evaluating the definite integral from \( \frac{\pi}{4} \) to \( \frac{3\pi}{4} \): \[ \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{1}{1 + \sin \phi} \, d\phi = \left[ \tan \phi - \ln |\sec \phi + \tan \phi| \right]_{\frac{\pi}{4}}^{\frac{3\pi}{4}}. \] After evaluating the limits, we find: \[ \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{1}{1 + \sin \phi} \, d\phi = \frac{\pi}{2}. \] Finally, we substitute back into our equation for \( I \): \[ I = \frac{1}{2} \cdot \pi \cdot \frac{\pi}{2} = \frac{\pi^2}{4}. \] Thus, the value of the integral is: \[ \boxed{\frac{\pi^2}{4}}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise CRITICAL THINKING|115 Videos
  • CONTINUITY

    TARGET PUBLICATION|Exercise Evaluation Test|10 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos

Similar Questions

Explore conceptually related problems

int_(pi//4)^(3pi//4)(xsinx)/(1+sinx)dx

The value of int_(pi//4)^(3pi//4) (x)/(1+sin x) dx is equal to

The value of int_(pi//4)^(3pi//4)(x)/(1+sinx) dx .. . . . .

int_(pi//4)^(3pi//4)(dx)/(1+cos x)=

Evaluate: int_(pi/4)^((3pi)/4) varphi/(1-sinvarphi)d varphi

The value of int_(pi/4)^((3pi)/4)(cos x)/(1-cos x)dx is equal to (k-(pi)/(2)) then k=

int_(pi//4)^(3pi//4)(dx)/(1+cosx) is equal to

int_(pi//4)^(3pi//4)(dx)/(1+cosx) is equal to

TARGET PUBLICATION-DEFINITE INTEGRALS-COMPETITIVE THINKING
  1. The value of the definite integral 1/pi int(pi/2)^((5pi)/2) e^(tan^(-...

    Text Solution

    |

  2. If f(x)=f(pi+e-x) and inte^pif(x)dx=2/(e+pi), then inte^pi xf(x)dx is ...

    Text Solution

    |

  3. The value of int(pi//4)^(3pi//4)(phi)/(1+sinphi)d phi is

    Text Solution

    |

  4. Let I(1) =int(a)^(pi-a)xf(sinx)dx,I(2)=int(a)^(pi-a)f(sinx)dx, then I(...

    Text Solution

    |

  5. If f(x)=(e^(2))/(1+e^(x)),I(1)=overset(f(a))underset(f(-a))int xg{x(1-...

    Text Solution

    |

  6. Q. int0^pi(e^(cos^2x)( cos^3(2n+1) x dx, n in I

    Text Solution

    |

  7. int0^pi x f(sin x)dx is equal to

    Text Solution

    |

  8. If I(1)=int(0)^(pi//2)f(sin2x)sin x dx and I(2)=int(0)^(pi//4)f(cos2x)...

    Text Solution

    |

  9. Evaluate: int0^(100pi)sqrt((1-cos2x))dxdot

    Text Solution

    |

  10. int(-1)^(1) sin^(3) x cos^(2) x dx is equal to

    Text Solution

    |

  11. The value of int((pi)/4)/((-pi)/4)sin^(103)x .cos^(101)xdx is

    Text Solution

    |

  12. The value of int- 2^2(xcosx+sinx+1)dx is

    Text Solution

    |

  13. int(4)^(4)log((9-x)/(9+x))dx equals

    Text Solution

    |

  14. Evaluate the following : int(-pi//2)^(pi//2)log((2-sinx)/(2+sinx))d...

    Text Solution

    |

  15. To find the numberical value of overset(2)underset(-2)int (px^(3)+qx+8...

    Text Solution

    |

  16. If f(x)={(e^(cosx)sinx, |x|le2),(2, otherwise):} then int-2^3f(x)dx= (...

    Text Solution

    |

  17. int(-2)^0{x^3+3x^2+3x+3+(x+1)cos(x+1)dxi se q u a lto -4 (b) 0 (c...

    Text Solution

    |

  18. If f(x) is defined on [-2, 2] by f(x) = 4x^2 – 3x + 1 and g(x) = (f(-x...

    Text Solution

    |

  19. int-2^2 |x| dx is equal to

    Text Solution

    |

  20. int(-2)^(2)|xcos pix|dx is equal to

    Text Solution

    |