Home
Class 12
MATHS
Let I(1) =int(a)^(pi-a)xf(sinx)dx,I(2)=i...

Let `I_(1) =int_(a)^(pi-a)xf(sinx)dx,I_(2)=int_(a)^(pi-a)f(sinx)dx`, then `I_(2)` is equal to

A

`(pi)/2 I_(1)`

B

`piI_(1)`

C

`2/(pi)I_(1)`

D

`2I_(1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( I_2 = \int_a^{\pi - a} f(\sin x) \, dx \) given that \( I_1 = \int_a^{\pi - a} x f(\sin x) \, dx \). ### Step-by-step solution: 1. **Understanding the Integrals**: We have two integrals: \[ I_1 = \int_a^{\pi - a} x f(\sin x) \, dx \] \[ I_2 = \int_a^{\pi - a} f(\sin x) \, dx \] 2. **Using the Property of Definite Integrals**: We can use the property of definite integrals that states: \[ \int_a^b f(x) \, dx = \int_a^b f(a + b - x) \, dx \] In our case, we can apply this property to \( I_1 \). 3. **Changing the Variable in \( I_1 \)**: Let’s change the variable in \( I_1 \) using \( x = \pi - a - t \). Then, when \( x = a \), \( t = \pi - 2a \) and when \( x = \pi - a \), \( t = 0 \). The differential \( dx = -dt \). Thus, we have: \[ I_1 = \int_{a}^{\pi - a} x f(\sin x) \, dx = \int_{\pi - a}^{a} (\pi - a - t) f(\sin(\pi - a - t)) (-dt) \] Since \( \sin(\pi - x) = \sin x \), we can simplify this to: \[ I_1 = \int_{a}^{\pi - a} (\pi - a - t) f(\sin t) \, dt \] 4. **Splitting the Integral**: Now, we can split the integral: \[ I_1 = \int_a^{\pi - a} (\pi - a) f(\sin t) \, dt - \int_a^{\pi - a} t f(\sin t) \, dt \] This gives us: \[ I_1 = (\pi - a) I_2 - I_1 \] 5. **Solving for \( I_2 \)**: Rearranging the equation gives: \[ 2I_1 = (\pi - a) I_2 \] Therefore: \[ I_2 = \frac{2I_1}{\pi - a} \] ### Final Result: Thus, we have: \[ I_2 = \frac{2I_1}{\pi - a} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise CRITICAL THINKING|115 Videos
  • CONTINUITY

    TARGET PUBLICATION|Exercise Evaluation Test|10 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos

Similar Questions

Explore conceptually related problems

int_(0)^( pi)xf(sin x)dx=(pi)/(2)int_(0)^( pi)f(sin x)dx

If int_(0)^(pi)xf(sinx)dx=A int_(0)^(pi//2) f(sinx)dx , then A is

int_(pi)^(2pi)|sinx|dx=?

int_(0)^(2pi)|sinx|dx=?

int_(0)^(2pi)(sinx+cosx)dx=

int_(pi/3)^(pi/2) sinx dx

For f(x) =x^(4) +|x|, let I_(1)= int _(0)^(pi)f(cos x) dx and I_(2)= int_(0)^(pi//2) f(sin x ) dx "then" (I_(1))/(I_(2)) has the value equal to

I_(1)=int_(0)^((pi)/2)In (sinx)dx, I_(2)=int_(-pi//4)^(pi//4)In(sinx+cosx)dx . Then

Let I_(1)=int_(0)^(3 pi)(f(cos^(2)x)dxI_(2)=int_(0)^(2 pi)(f(cos^(2)x)dx and I_(3)=int_(0)^( pi)(f(cos^(2)x)dx, then (A)I_(1)+2P_(2)+3I_(2)=0(B)I_(1)=2I_(2)+I_(3)(C)I_(2)+I_(3)=I_(1)(D)I_(1)=2I_(3)

If I_(1)=int_(0)^(pi//2)f(sin2x)sin x dx and I_(2)=int_(0)^(pi//4)f(cos2x)cosx dx , then I_(1)//I_(2) is equal to

TARGET PUBLICATION-DEFINITE INTEGRALS-COMPETITIVE THINKING
  1. If f(x)=f(pi+e-x) and inte^pif(x)dx=2/(e+pi), then inte^pi xf(x)dx is ...

    Text Solution

    |

  2. The value of int(pi//4)^(3pi//4)(phi)/(1+sinphi)d phi is

    Text Solution

    |

  3. Let I(1) =int(a)^(pi-a)xf(sinx)dx,I(2)=int(a)^(pi-a)f(sinx)dx, then I(...

    Text Solution

    |

  4. If f(x)=(e^(2))/(1+e^(x)),I(1)=overset(f(a))underset(f(-a))int xg{x(1-...

    Text Solution

    |

  5. Q. int0^pi(e^(cos^2x)( cos^3(2n+1) x dx, n in I

    Text Solution

    |

  6. int0^pi x f(sin x)dx is equal to

    Text Solution

    |

  7. If I(1)=int(0)^(pi//2)f(sin2x)sin x dx and I(2)=int(0)^(pi//4)f(cos2x)...

    Text Solution

    |

  8. Evaluate: int0^(100pi)sqrt((1-cos2x))dxdot

    Text Solution

    |

  9. int(-1)^(1) sin^(3) x cos^(2) x dx is equal to

    Text Solution

    |

  10. The value of int((pi)/4)/((-pi)/4)sin^(103)x .cos^(101)xdx is

    Text Solution

    |

  11. The value of int- 2^2(xcosx+sinx+1)dx is

    Text Solution

    |

  12. int(4)^(4)log((9-x)/(9+x))dx equals

    Text Solution

    |

  13. Evaluate the following : int(-pi//2)^(pi//2)log((2-sinx)/(2+sinx))d...

    Text Solution

    |

  14. To find the numberical value of overset(2)underset(-2)int (px^(3)+qx+8...

    Text Solution

    |

  15. If f(x)={(e^(cosx)sinx, |x|le2),(2, otherwise):} then int-2^3f(x)dx= (...

    Text Solution

    |

  16. int(-2)^0{x^3+3x^2+3x+3+(x+1)cos(x+1)dxi se q u a lto -4 (b) 0 (c...

    Text Solution

    |

  17. If f(x) is defined on [-2, 2] by f(x) = 4x^2 – 3x + 1 and g(x) = (f(-x...

    Text Solution

    |

  18. int-2^2 |x| dx is equal to

    Text Solution

    |

  19. int(-2)^(2)|xcos pix|dx is equal to

    Text Solution

    |

  20. int(0)^(1) x tan^(-1) x " "dx =

    Text Solution

    |