Home
Class 12
MATHS
int0^pi x f(sin x)dx is equal to...

`int_0^pi x f(sin x)dx` is equal to

A

`piint_(0)^(pi)f(cosx)dx`

B

`piint_(0)^(pi)f(six)dx`

C

`(pi)/2int_(0)^((pi)/2)f(sinx)dx`

D

`piint_(0)^((pi)/2)f(cosx)dx`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise CRITICAL THINKING|115 Videos
  • CONTINUITY

    TARGET PUBLICATION|Exercise Evaluation Test|10 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos

Similar Questions

Explore conceptually related problems

int_(0)^( pi)xf(sin x)dx is equal to

The integral int_(0)^(pi) x f(sinx )dx is equal to

int_0^pi x/(1+sin x) dx

int_(0)^(pi//2) x sin x dx is equal to

The integral int_(0)^( pi)f(sin x)dx is equivalent to

f(x) = min{2 sinx, 1- cos x, 1} then int_0^(pi)f(x) dx is equal to

int_0^(pi/2) sin x dx