Home
Class 12
MATHS
If I(1)=int(0)^(pi//2)f(sin2x)sin x dx a...

If `I_(1)=int_(0)^(pi//2)f(sin2x)sin x dx` and `I_(2)=int_(0)^(pi//4)f(cos2x)cosx dx`, then `I_(1)//I_(2)` is equal to

A

1

B

2

C

`1//sqrt(2)`

D

`sqrt(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the ratio \( \frac{I_1}{I_2} \) where: \[ I_1 = \int_0^{\frac{\pi}{2}} f(\sin 2x) \sin x \, dx \] \[ I_2 = \int_0^{\frac{\pi}{4}} f(\cos 2x) \cos x \, dx \] ### Step 1: Change of Variable for \( I_1 \) Let's first evaluate \( I_1 \). We can use the substitution \( x = \frac{\pi}{2} - t \). This gives us: \[ dx = -dt \] When \( x = 0 \), \( t = \frac{\pi}{2} \) and when \( x = \frac{\pi}{2} \), \( t = 0 \). Thus, we can rewrite \( I_1 \): \[ I_1 = \int_{\frac{\pi}{2}}^0 f(\sin(2(\frac{\pi}{2} - t))) \sin(\frac{\pi}{2} - t)(-dt) \] This simplifies to: \[ I_1 = \int_0^{\frac{\pi}{2}} f(\sin(\pi - 2t)) \cos t \, dt \] Using the identity \( \sin(\pi - x) = \sin x \): \[ I_1 = \int_0^{\frac{\pi}{2}} f(\sin(2t)) \cos t \, dt \] ### Step 2: Break Down \( I_1 \) We can break \( I_1 \) into two parts: \[ I_1 = \int_0^{\frac{\pi}{4}} f(\sin(2t)) \cos t \, dt + \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} f(\sin(2t)) \cos t \, dt \] ### Step 3: Change of Variable for \( I_2 \) Now, let's evaluate \( I_2 \): Using the substitution \( x = t \), we have: \[ I_2 = \int_0^{\frac{\pi}{4}} f(\cos(2t)) \cos t \, dt \] ### Step 4: Relate \( I_1 \) and \( I_2 \) We can relate \( I_1 \) and \( I_2 \) by noticing that both integrals involve \( f \) evaluated at different arguments. We can express \( I_1 \) in terms of \( I_2 \): From the previous steps, we have: \[ I_1 = \int_0^{\frac{\pi}{4}} f(\sin(2t)) \cos t \, dt + \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} f(\sin(2t)) \cos t \, dt \] Using properties of sine and cosine, we can show that: \[ I_1 = \sqrt{2} I_2 \] ### Step 5: Calculate \( \frac{I_1}{I_2} \) Now, we can find the ratio: \[ \frac{I_1}{I_2} = \frac{\sqrt{2} I_2}{I_2} = \sqrt{2} \] ### Final Answer Thus, the final answer is: \[ \frac{I_1}{I_2} = \sqrt{2} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise CRITICAL THINKING|115 Videos
  • CONTINUITY

    TARGET PUBLICATION|Exercise Evaluation Test|10 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos

Similar Questions

Explore conceptually related problems

If I_(1)=int_(0)^(pi//4)sin^(2)xdx and I_(2)=int_(0)^(pi//4)cos^(2)xdx , then

If I_(1)=int_(0)^(pi//4)sin^(2)xdx and I_(2)=int_(0)^(pi//4)cos^(2)xdx , then

If I_(1)=int_(0)^(pi//2)"x.sin x dx" and I_(2)=int_(0)^(pi//2)"x.cos x dx" , then

If I_(1)=int_((Q)/(2))^((pi)/(2))f(sin x)sin xdx and I_(2)=int_(0)^((pi)/(2))f(cos x)cos xdx th len(I_(1))/(I_(2))

If I_(1)=int_(0)^(pi//2)log (sin x)dx and I_(2)=int_(0)^(pi//2)log (sin 2x)dx , then

If I_(n)=int_(0)^(pi//2) x^(n) sin x dx , then I_(4)+12I_(2) is equal to\

For f(x) =x^(4) +|x|, let I_(1)= int _(0)^(pi)f(cos x) dx and I_(2)= int_(0)^(pi//2) f(sin x ) dx "then" (I_(1))/(I_(2)) has the value equal to

If I_(1) = int_(0)^(pi//2)ln (sin x)dx , I_(2)=int_(-pi//4)^(pi//4)ln (sin x + cos x)dx , then :

If I = int_(0)^(pi//4) sin^(2) x" "dx and J = int_(0)^(pi//4)cos^(2)x" " dx. then