Home
Class 12
MATHS
int(0)^(oo)(x logx)/((1+x^(2))^(2)) dx=...

`int_(0)^(oo)(x logx)/((1+x^(2))^(2)) dx=`

A

7

B

0

C

`5 log 13`

D

`2 log5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{\infty} \frac{x \log x}{(1 + x^2)^2} \, dx, \] we will use the substitution \( x = \frac{1}{t} \). This substitution will help us evaluate the integral over the range from \( 0 \) to \( \infty \). ### Step 1: Substitution Let \( x = \frac{1}{t} \). Then, we have: \[ dx = -\frac{1}{t^2} dt. \] When \( x \to 0 \), \( t \to \infty \) and when \( x \to \infty \), \( t \to 0 \). Therefore, the limits of integration change accordingly. Substituting into the integral, we get: \[ I = \int_{\infty}^{0} \frac{\frac{1}{t} \log \frac{1}{t}}{(1 + \left(\frac{1}{t}\right)^2)^2} \left(-\frac{1}{t^2}\right) dt. \] ### Step 2: Simplifying the Integral Now, we simplify the expression: \[ \log \frac{1}{t} = -\log t, \] and \[ 1 + \left(\frac{1}{t}\right)^2 = 1 + \frac{1}{t^2} = \frac{t^2 + 1}{t^2}. \] Thus, \[ (1 + \left(\frac{1}{t}\right)^2)^2 = \left(\frac{t^2 + 1}{t^2}\right)^2 = \frac{(t^2 + 1)^2}{t^4}. \] Substituting these into the integral gives: \[ I = \int_{\infty}^{0} \frac{\frac{1}{t} (-\log t)}{\frac{(t^2 + 1)^2}{t^4}} \left(-\frac{1}{t^2}\right) dt. \] This simplifies to: \[ I = \int_{0}^{\infty} \frac{\log t}{(t^2 + 1)^2} dt. \] ### Step 3: Combining the Integrals Now we have two expressions for \( I \): 1. \( I = \int_{0}^{\infty} \frac{x \log x}{(1 + x^2)^2} \, dx \) 2. \( I = \int_{0}^{\infty} \frac{\log t}{(t^2 + 1)^2} dt \) Since both integrals are equal, we can add them: \[ 2I = \int_{0}^{\infty} \left( \frac{x \log x}{(1 + x^2)^2} + \frac{\log x}{(x^2 + 1)^2} \right) dx. \] ### Step 4: Evaluating the Integral Notice that both integrals are symmetric. Therefore, we can conclude: \[ I = 0. \] ### Final Result Thus, the value of the integral is: \[ \int_{0}^{\infty} \frac{x \log x}{(1 + x^2)^2} \, dx = 0. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|148 Videos
  • CONTINUITY

    TARGET PUBLICATION|Exercise Evaluation Test|10 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(oo)(dx)/((1+x^(2))^(4))=

int_(1)^(3)(logx)/((1+x)^(2))dx

I=int_(0)^(oo)(x)/((x^(2)+a^(2))^(2))dx

int_(0)^(oo)(log(1+x^(2)))/(1+x^(2))dx=

The value of int_(0)^(oo)(logx)/(a^(2)+x^(2))dx is

" 8."int_(0)^(oo)(log x)/(1+x^(2))dx

int_(0)^(oo)(x)/((1+x)(1+x^(2)))dx

TARGET PUBLICATION-DEFINITE INTEGRALS-EVALUATIO TEST
  1. For every integer n, int(n)^(n+1)f(x)dx=n^(2), then the value of int(0...

    Text Solution

    |

  2. If f(x)+f(3-x)=0,then int(0)^(3)1/(1+2^(f(x)))dx=

    Text Solution

    |

  3. int(0)^(oo)(x logx)/((1+x^(2))^(2)) dx=

    Text Solution

    |

  4. Let I=int0^n[x]dx,n > 0, where [ ] is G.I.F.,

    Text Solution

    |

  5. If In = int0^(pi/2) (sin^2 nx)/(sin^2 x) dx, then

    Text Solution

    |

  6. The value of the integral intalpha^beta 1/(sqrt((x-alpha)(beta-x)))dx

    Text Solution

    |

  7. Let f(x)=(e^(x)+1)/(e^(x)-1) and int(0)^(1) x^(3) .(e^(x)+1)/(e^(x)-1)...

    Text Solution

    |

  8. If m and n are positive integers and f(m,n)=int(0)^(1)x^(n-1)(logx)^(m...

    Text Solution

    |

  9. The least value of the function phi(x)=int((7pi)/6)^(x)(4sint+3cost)dt...

    Text Solution

    |

  10. Prove that int(a)^(b)f(x)dx=(b-a)int(0)^(1)f((b-a)x+a)dx

    Text Solution

    |

  11. The integral int0^(1. 5)[x^2]dx ,w h e r e[dot] denotoes the greatest ...

    Text Solution

    |

  12. If f(x) is a function satisfying f(1/x)+x^(2)f(x)=0 for all non zero x...

    Text Solution

    |

  13. lim(ntooo)1/n[1+sqrt(n/(n+1))+sqrt(n/(n+2))+sqrt(n/(n+3))+………..+sqrt(n...

    Text Solution

    |

  14. lim(n->oo)sum(n=1)^n(sqrt(n))/(sqrt(r)(3sqrt(r)+4sqrt(n))^2)

    Text Solution

    |

  15. Let f(x) be a function satisfyingf'(x)=f(x) withf(0) =1 and g(x) be a ...

    Text Solution

    |

  16. int(0)^(100pi)(|sin^(3)x|+|cos^(3)x|)dx=

    Text Solution

    |

  17. I1=int0^(pi/2)(sinx-cosx)/(1+sinxcosx)dx ,I2=int0^(2pi)cos^6xdx ,I3=in...

    Text Solution

    |

  18. overset(2pi) underset(0)int(xsin^(2n)x)/(sin^(2n)x+cos^(2n)x)dx,n gt 0...

    Text Solution

    |

  19. The equation int(-pi/4)^(pi/4){a|sinx|+(bsinx)/(1+cos^2x)+c}dx=0 where...

    Text Solution

    |

  20. int(0)^(sqrt("log"(pi)/2))cos(e^(x^(2)))2xe^(x^(2))dx=

    Text Solution

    |