Home
Class 12
MATHS
If f(x) is a polynomial of degree 2, suc...

If `f(x)` is a polynomial of degree 2, such that `f(0)=3,f'(0)=-7,f''(0)=8 int_(1)^(2)f(x)dx=`

A

`11/6`

B

`13/6`

C

`17/6`

D

`19/6`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the definite integral of the polynomial function \( f(x) \) over the interval from 1 to 2. We start by determining the polynomial \( f(x) \) based on the given conditions. ### Step 1: Form the polynomial Since \( f(x) \) is a polynomial of degree 2, we can express it in the standard form: \[ f(x) = ax^2 + bx + c \] ### Step 2: Use the given conditions We have the following conditions: 1. \( f(0) = 3 \) 2. \( f'(0) = -7 \) 3. \( f''(0) = 8 \) #### Condition 1: \( f(0) = 3 \) Substituting \( x = 0 \) into the polynomial: \[ f(0) = a(0)^2 + b(0) + c = c = 3 \] Thus, \( c = 3 \). #### Condition 2: \( f'(0) = -7 \) First, we find the derivative \( f'(x) \): \[ f'(x) = 2ax + b \] Now substituting \( x = 0 \): \[ f'(0) = 2a(0) + b = b = -7 \] Thus, \( b = -7 \). #### Condition 3: \( f''(0) = 8 \) Next, we find the second derivative \( f''(x) \): \[ f''(x) = 2a \] Now substituting \( x = 0 \): \[ f''(0) = 2a = 8 \implies a = 4 \] ### Step 3: Write the polynomial Now we can substitute the values of \( a \), \( b \), and \( c \) back into the polynomial: \[ f(x) = 4x^2 - 7x + 3 \] ### Step 4: Calculate the definite integral We need to compute the integral: \[ \int_{1}^{2} f(x) \, dx = \int_{1}^{2} (4x^2 - 7x + 3) \, dx \] ### Step 5: Integrate the polynomial We integrate term by term: \[ \int (4x^2) \, dx = \frac{4x^3}{3}, \quad \int (-7x) \, dx = -\frac{7x^2}{2}, \quad \int (3) \, dx = 3x \] Thus, \[ \int (4x^2 - 7x + 3) \, dx = \frac{4x^3}{3} - \frac{7x^2}{2} + 3x \] ### Step 6: Evaluate the integral from 1 to 2 Now we evaluate the definite integral: \[ \left[ \frac{4x^3}{3} - \frac{7x^2}{2} + 3x \right]_{1}^{2} \] Calculating at \( x = 2 \): \[ = \frac{4(2)^3}{3} - \frac{7(2)^2}{2} + 3(2) = \frac{32}{3} - 14 + 6 = \frac{32}{3} - \frac{42}{3} = -\frac{10}{3} \] Calculating at \( x = 1 \): \[ = \frac{4(1)^3}{3} - \frac{7(1)^2}{2} + 3(1) = \frac{4}{3} - \frac{7}{2} + 3 = \frac{4}{3} - \frac{21}{6} + \frac{18}{6} = \frac{4}{3} - \frac{3}{6} = \frac{4}{3} - \frac{1}{2} = \frac{8}{6} - \frac{3}{6} = \frac{5}{6} \] ### Step 7: Final calculation Now we compute: \[ \int_{1}^{2} f(x) \, dx = \left(-\frac{10}{3}\right) - \left(\frac{5}{6}\right) \] Finding a common denominator (which is 6): \[ = -\frac{20}{6} - \frac{5}{6} = -\frac{25}{6} \] ### Final Answer Thus, the value of the definite integral \( \int_{1}^{2} f(x) \, dx \) is: \[ \boxed{-\frac{25}{6}} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|148 Videos
  • CONTINUITY

    TARGET PUBLICATION|Exercise Evaluation Test|10 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos

Similar Questions

Explore conceptually related problems

If f (x) is a polynomial of degree two and f(0) =4 f'(0) =3,f'' (0) 4 then f(-1) =

Evaluate: intf(x)/(x^3-1)dx , where f(x) is a polynomial of degree 2 in x such that f(0)=f(1)=3f(2)=-3

Let f(x) be a polynomial of degree 2 satisfying f(0)=1, f(0) =-2 and f''(0)=6 , then int_(-1)^(2) f(x) is equal to

If f (x) is polynomial of degree two and f(0) =4 f'(0) =3,f''(0) =4,then f(-1) =

Find a polynomial f(x) of degree 2 where f(0)=8, f(1)=12, f(2)=18

If f(x) is a polynomial of degree three such that f(0)=1,f(1)=2 and 0 is a f(x) critical point but f(x) does not have extremum at 0, then int(f(x))/(sqrt(x^(2)+7))dx is

Prove that: int_(0)^(2a)f(x)dx=int_(0)^(2a)f(2a-x)dx

If a is a fixed real number such that f(a-x)+f(a+x)=0, then int_(0)^(2a) f(x) dx=

TARGET PUBLICATION-DEFINITE INTEGRALS-EVALUATIO TEST
  1. Prove that int(a)^(b)f(x)dx=(b-a)int(0)^(1)f((b-a)x+a)dx

    Text Solution

    |

  2. The integral int0^(1. 5)[x^2]dx ,w h e r e[dot] denotoes the greatest ...

    Text Solution

    |

  3. If f(x) is a function satisfying f(1/x)+x^(2)f(x)=0 for all non zero x...

    Text Solution

    |

  4. lim(ntooo)1/n[1+sqrt(n/(n+1))+sqrt(n/(n+2))+sqrt(n/(n+3))+………..+sqrt(n...

    Text Solution

    |

  5. lim(n->oo)sum(n=1)^n(sqrt(n))/(sqrt(r)(3sqrt(r)+4sqrt(n))^2)

    Text Solution

    |

  6. Let f(x) be a function satisfyingf'(x)=f(x) withf(0) =1 and g(x) be a ...

    Text Solution

    |

  7. int(0)^(100pi)(|sin^(3)x|+|cos^(3)x|)dx=

    Text Solution

    |

  8. I1=int0^(pi/2)(sinx-cosx)/(1+sinxcosx)dx ,I2=int0^(2pi)cos^6xdx ,I3=in...

    Text Solution

    |

  9. overset(2pi) underset(0)int(xsin^(2n)x)/(sin^(2n)x+cos^(2n)x)dx,n gt 0...

    Text Solution

    |

  10. The equation int(-pi/4)^(pi/4){a|sinx|+(bsinx)/(1+cos^2x)+c}dx=0 where...

    Text Solution

    |

  11. int(0)^(sqrt("log"(pi)/2))cos(e^(x^(2)))2xe^(x^(2))dx=

    Text Solution

    |

  12. If f(x)=int(0)^(x)sin^(6)tdt, then f(x+pi)=

    Text Solution

    |

  13. If f(x) is a polynomial of degree 2, such that f(0)=3,f'(0)=-7,f''(0)=...

    Text Solution

    |

  14. If f(x)=Asin((pix)/2)+B, f'(1/2)=sqrt2 and int0^1 f(x)dx=(2A)/pi then ...

    Text Solution

    |

  15. If f(x)=|(sin x+sin x 2x+sin3x,sin2x,sin3x),(3+4sinx,3,4sinx),(1+sinx,...

    Text Solution

    |

  16. If a is a positive integer, then the number of values of a satisfying ...

    Text Solution

    |

  17. If for all real numbers y ,[y] is the greatest integer less than or eq...

    Text Solution

    |

  18. Let f(x) = |{:(secx,cosx,sec^(2)x+cotx cosecx),(cos^(2)x,cos^(2)x,cose...

    Text Solution

    |

  19. If (1)/(sqrt(a))underset(1)overset(a)int((3)/(2)sqrt(x)+1-(1)/(sqrt(x)...

    Text Solution

    |

  20. Let d/(dx)F(x)=((e^(sinx))/x),x > 0. If int1^4 3/x e^s in x^3dx=F(k)-...

    Text Solution

    |