Home
Class 12
MATHS
If the probability function of a random ...

If the probability function of a random variable X is defined by `P(X=k) = a((k+1)/(2^k))` for `k= 0,1,2,3,4,5` then the probability that X takes a prime value is

A

`13/20`

B

`23/60`

C

`11/20`

D

`19/60`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the probability that the random variable \( X \) takes a prime value, given the probability function \( P(X=k) = a \frac{(k+1)}{2^k} \) for \( k = 0, 1, 2, 3, 4, 5 \). ### Step-by-Step Solution: 1. **Identify Prime Values**: The prime numbers in the range of \( k = 0, 1, 2, 3, 4, 5 \) are \( 2, 3, \) and \( 5 \). 2. **Write the Probability for Prime Values**: We need to find \( P(X=2) + P(X=3) + P(X=5) \). 3. **Calculate Each Probability**: Using the given probability function: - \( P(X=2) = a \frac{(2+1)}{2^2} = a \frac{3}{4} \) - \( P(X=3) = a \frac{(3+1)}{2^3} = a \frac{4}{8} = a \frac{1}{2} \) - \( P(X=5) = a \frac{(5+1)}{2^5} = a \frac{6}{32} = a \frac{3}{16} \) 4. **Sum the Probabilities**: Now, we sum these probabilities: \[ P(X=2) + P(X=3) + P(X=5) = a \frac{3}{4} + a \frac{1}{2} + a \frac{3}{16} \] 5. **Find a Common Denominator**: The common denominator for \( 4, 2, \) and \( 16 \) is \( 16 \): - \( P(X=2) = a \frac{3 \times 4}{16} = a \frac{12}{16} \) - \( P(X=3) = a \frac{1 \times 8}{16} = a \frac{8}{16} \) - \( P(X=5) = a \frac{3}{16} \) Thus, \[ P(X=2) + P(X=3) + P(X=5) = a \left( \frac{12 + 8 + 3}{16} \right) = a \frac{23}{16} \] 6. **Determine the Value of \( a \)**: To find \( a \), we use the fact that the total probability must equal 1: \[ P(X=0) + P(X=1) + P(X=2) + P(X=3) + P(X=4) + P(X=5) = 1 \] Calculate each term: - \( P(X=0) = a \frac{1}{1} = a \) - \( P(X=1) = a \frac{2}{2} = a \) - \( P(X=2) = a \frac{3}{4} \) - \( P(X=3) = a \frac{1}{2} \) - \( P(X=4) = a \frac{5}{16} \) - \( P(X=5) = a \frac{3}{16} \) Therefore, \[ a + a + a \frac{3}{4} + a \frac{1}{2} + a \frac{5}{16} + a \frac{3}{16} = 1 \] Combine the terms: \[ 3a + a \left( \frac{12}{16} + \frac{8}{16} + \frac{5}{16} + \frac{3}{16} \right) = 1 \] \[ 3a + a \frac{28}{16} = 1 \] \[ a \left( 3 + \frac{28}{16} \right) = 1 \] \[ a \left( \frac{48 + 28}{16} \right) = 1 \] \[ a \frac{76}{16} = 1 \implies a = \frac{16}{76} = \frac{4}{19} \] 7. **Substitute \( a \) back into the Probability of Prime Values**: Now substitute \( a \) into the sum of probabilities for prime values: \[ P(X \text{ is prime}) = \frac{4}{19} \frac{23}{16} = \frac{4 \times 23}{19 \times 16} = \frac{92}{304} = \frac{23}{76} \] ### Final Answer: The probability that \( X \) takes a prime value is \( \frac{23}{76} \).
Promotional Banner

Topper's Solved these Questions

  • PROBABILITY DISTRIBUTION

    TARGET PUBLICATION|Exercise Evaluation test|5 Videos
  • PROBABILITY DISTRIBUTION

    TARGET PUBLICATION|Exercise Critical Thinking|33 Videos
  • PLANE

    TARGET PUBLICATION|Exercise EVALUATION TEST|14 Videos
  • THREE DIMENSIONAL GEOMETRY

    TARGET PUBLICATION|Exercise Evaluation Test|9 Videos

Similar Questions

Explore conceptually related problems

For a random variable X if P(X=k) = 4((k+1)/5^k)a , for k=0,1,2,…then a= _____

The probability of a random variable X is given below Determine the value of k

If the probability distribution of a random variable X is given by X=x_(i):1234P(X=x_(i)):2k4k3kk Write the value of k

The probability distribution of a discrete random variable X is given below The value of k is

If the range ot a random vaniabie X is 0,1,2,3, at P(X=K)=((K+1)/(3^(k))) a for k>=0, then a equals

The range of a random variable X is 1,2,3,..., and P(X=k)=(c^(k))/(k!) where k=1,2,3... .Find the value of P(0ltXlt3)

The probability distribution of a random variable X is given as follows: If E(X)=2.3 , then value of k is

If the probability of a random variable X is a given below : {:(X=x:,-2,-1,0,1,2,3),(P(X=x):,(1)/(2),k,(1)/(5),2k,(3)/(10),k):} Then the value of k, is :

The probability distribution of a discrate random variable X is : {:(X=x, 1,2,3,4,5),(P(X=x),k,2k,3k,4k,5k):} Find P (X le 4).