Home
Class 12
MATHS
A random variable X takes the value 1,2,...

A random variable X takes the value 1,2,3 and 4 such that
`2P(X=1)=3P(X=2)=P(X=3)=5P(X=4)`. If `sigma^(2)` is the variance and `mu` is the mean of X then `sigma^(2)+mu^(2)=`

A

`421/61`

B

`570/61`

C

`149/61`

D

`3480/3721`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will first express the probabilities in terms of a single variable and then find the mean and variance of the random variable \(X\). ### Step 1: Define the probabilities Given the relationships: \[ 2P(X=1) = 3P(X=2) = P(X=3) = 5P(X=4) \] Let \(P(X=1) = 2k\), \(P(X=2) = 3k\), \(P(X=3) = k\), and \(P(X=4) = 5k\). ### Step 2: Set up the equation for total probability The total probability must equal 1: \[ P(X=1) + P(X=2) + P(X=3) + P(X=4) = 1 \] Substituting the probabilities we defined: \[ 2k + 3k + k + 5k = 1 \] This simplifies to: \[ 11k = 1 \] Thus, we find: \[ k = \frac{1}{11} \] ### Step 3: Calculate individual probabilities Now we can calculate the individual probabilities: \[ P(X=1) = 2k = \frac{2}{11}, \quad P(X=2) = 3k = \frac{3}{11}, \quad P(X=3) = k = \frac{1}{11}, \quad P(X=4) = 5k = \frac{5}{11} \] ### Step 4: Calculate the mean (\(\mu\)) The mean \(\mu\) is given by: \[ \mu = E(X) = \sum x_i P(X=x_i) = 1 \cdot P(X=1) + 2 \cdot P(X=2) + 3 \cdot P(X=3) + 4 \cdot P(X=4) \] Substituting the probabilities: \[ \mu = 1 \cdot \frac{2}{11} + 2 \cdot \frac{3}{11} + 3 \cdot \frac{1}{11} + 4 \cdot \frac{5}{11} \] Calculating each term: \[ \mu = \frac{2}{11} + \frac{6}{11} + \frac{3}{11} + \frac{20}{11} = \frac{31}{11} \] ### Step 5: Calculate \(E(X^2)\) Next, we calculate \(E(X^2)\): \[ E(X^2) = \sum x_i^2 P(X=x_i) = 1^2 \cdot P(X=1) + 2^2 \cdot P(X=2) + 3^2 \cdot P(X=3) + 4^2 \cdot P(X=4) \] Substituting the probabilities: \[ E(X^2) = 1^2 \cdot \frac{2}{11} + 2^2 \cdot \frac{3}{11} + 3^2 \cdot \frac{1}{11} + 4^2 \cdot \frac{5}{11} \] Calculating each term: \[ E(X^2) = \frac{2}{11} + \frac{12}{11} + \frac{9}{11} + \frac{80}{11} = \frac{103}{11} \] ### Step 6: Calculate the variance (\(\sigma^2\)) The variance \(\sigma^2\) is given by: \[ \sigma^2 = E(X^2) - \mu^2 \] Calculating \(\mu^2\): \[ \mu^2 = \left(\frac{31}{11}\right)^2 = \frac{961}{121} \] Now substituting into the variance formula: \[ \sigma^2 = \frac{103}{11} - \frac{961}{121} \] To perform this subtraction, we convert \(\frac{103}{11}\) to a fraction with a denominator of 121: \[ \frac{103}{11} = \frac{103 \cdot 11}{121} = \frac{1133}{121} \] Thus, \[ \sigma^2 = \frac{1133}{121} - \frac{961}{121} = \frac{172}{121} \] ### Step 7: Calculate \(\sigma^2 + \mu^2\) Now we can find \(\sigma^2 + \mu^2\): \[ \sigma^2 + \mu^2 = \frac{172}{121} + \frac{961}{121} = \frac{1133}{121} \] ### Final Answer Thus, the final answer is: \[ \sigma^2 + \mu^2 = \frac{1133}{121} \]
Promotional Banner

Topper's Solved these Questions

  • PROBABILITY DISTRIBUTION

    TARGET PUBLICATION|Exercise Evaluation test|5 Videos
  • PROBABILITY DISTRIBUTION

    TARGET PUBLICATION|Exercise Critical Thinking|33 Videos
  • PLANE

    TARGET PUBLICATION|Exercise EVALUATION TEST|14 Videos
  • THREE DIMENSIONAL GEOMETRY

    TARGET PUBLICATION|Exercise Evaluation Test|9 Videos

Similar Questions

Explore conceptually related problems

A random variable X takes the value -1,0,1. It's mean is 0.6. If P(X=0)=0.2 then P(X=1)=

A random variable X takes the values 0,1 and 2 .If P(X=1)=P(X=2) and P(X=0)=0.4 ,then the mean value of the random variable X is

A random variate X takes the values 0,1,2,3 and its mean is 1.3. If P(X=3)=2P(X=1) and P(X=2)=0.3, then P(X=0) is equal to

For the p.m.f. P (X = x) of discrete random variable X which takes values 1, 2, 3, 4 such that 2P(X=1)=3P(X=2)=P(X=3)=4P(X=4) , then E (X)=

The random variable X can take only the values 0;1;2. Giventhat P(X=0)=P(X=1)=p and that E(X^(2))=E(X); find the value of p.

The random variable X can the values 0,1,2,3, Give P(X=0)=P(X=1)=p and P(X=2)=P(X=3) such that sum p_(i)x_(i)^(2)=2sum p_(i)x_(i) then find the value of p

Let X be a random variable which assumes values x_(1),x_(2),x_(3),x_(4) such that 2P(X=x_(1))=3P(X=x_(2))=P(X=x_(3))=5P(X=x_(4)) Find the probability distribution of X .

If X is a poisson variable such that 2P(X=0)+P(X=2)=2P(X=1) then E(X)=

A random variable X has its range (1 2 3} If P(X=1)=alpha P(X=2)=beta, p(X=3)=(1)/(6) and the mean is (5)/(3) then alpha , beta=

The random variable X can take only the values 0,1,2. If P(X=0)=P(X=1)=p and E(X^(2))=E[X] , then find valu of p.